25 research outputs found
Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents
Previous studies have demonstrated faster pulmonary oxygen uptake ( V ˙ O 2 ) kinetics in the trained state during the transition to and from moderate-intensity exercise in adults. Whilst a similar effect of training status has previously been observed during the on-transition in adolescents, whether this is also observed during recovery from exercise is presently unknown. The aim of the present study was therefore to examine V ˙ O 2 kinetics in trained and untrained male adolescents during recovery from moderate-intensity exercise. 15 trained (15 ± 0.8 years, V ˙ O 2max 54.9 ± 6.4 mL kg−1 min−1) and 8 untrained (15 ± 0.5 years, V ˙ O 2max 44.0 ± 4.6 mL kg−1 min−1) male adolescents performed two 6-min exercise off-transitions to 10 W from a preceding “baseline” of exercise at a workload equivalent to 80% lactate threshold; V ˙ O 2 (breath-by-breath) and muscle deoxyhaemoglobin (near-infrared spectroscopy) were measured continuously. The time constant of the fundamental phase of V ˙ O 2 off-kinetics was not different between trained and untrained (trained 27.8 ± 5.9 s vs. untrained 28.9 ± 7.6 s, P = 0.71). However, the time constant (trained 17.0 ± 7.5 s vs. untrained 32 ± 11 s, P < 0.01) and mean response time (trained 24.2 ± 9.2 s vs. untrained 34 ± 13 s, P = 0.05) of muscle deoxyhaemoglobin off-kinetics was faster in the trained subjects compared to the untrained subjects. V ˙ O 2 kinetics was unaffected by training status; the faster muscle deoxyhaemoglobin kinetics in the trained subjects thus indicates slower blood flow kinetics during recovery from exercise compared to the untrained subjects
Effect of pedaling cadence on muscle oxygenation during high-intensity cycling until exhaustion: a comparison between untrained subjects and triathletes
Purpose: The aim of this study was to compare the muscle oxygenation between trained and untrained subjects during heavy exercise until exhaustion at two extreme pedaling cadences using a NIRS system.
Methods: Nine untrained male subjects and nine male competitive triathletes cycled until exhaustion at an intensity corresponding to 90 % of the power output achieved at peak oxygen uptake at 40 and 100 rpm. Gas exchanges were measured breath-by-breath during each exercise. Muscle (de) oxygenation was monitored continuously by near-infrared spectroscopy on the Vastus Lateralis.
Results: Muscle deoxygenation (Delta deoxy[Hb + Mb], i.e., O-2 extraction) and Delta total[Hb + Mb] were significantly higher at 40 rpm compared to 100 rpm during the exercise in untrained subjects but not in triathletes (p < 0.05). The time performed until exhaustion was significantly higher at 40 than at 100 rpm in untrained subjects (373 +/- 55 vs. 234 +/- 37 s, respectively) but not in triathletes (339 +/- 69 vs. 325 +/- 66 s).
Conclusions: These results indicate that high aerobic fitness (1) allows for better regulation between (V) over dotO(2M) and (Q) over dot O-2M following the change in pedaling cadence, and (2) is the most important factor in the relationship between pedaling cadence and performance