955 research outputs found
Micro-RNA mediated regulation of a cytokine factor: TNF-alpha: an exploration of gene expression control in proliferating and quiescent cells
Two types mechanisms that control gene expression involve cis-regulatory factors and trans-regulatory factors. Cis-acting regulatory RNAs include targeted messenger RNA (mRNA) specificity and AU-rich elements (AREs). AU-rich mRNAs are a subcategory of mRNAs that have AREs in their 3'-Untranslated Regions (UTRs). These ARE-genes have been observed to correlate with rapid mRNA decay patterns. They comprise approximately 12% of all transcripts and are known to encode for a group of proteins that have involvement in the inflammatory response. Trans-acting regulatory mechanisms are micro RNAs (miRNAs) in eukaryotes, and small RNAs (sRNA) in prokaryotes. Misregulation of these mechanisms can lead to many disease states if rapid mRNA decay does not occur, leading to tumorigenesis, and eventually, different types of cancer. In this project, the TNF-α ARE was studied in both serum-positive and quiescent G0 conditions in order to analyze whether the translation of the gene differed in any respect due to the binding of a known miRNA called miR-130a. Additionally, both serum-positive and one-day serum-starved quiescent G0 conditions were analyzed for eIF5B and FXR1 levels to analyze whether there was a correlation between the two proteins
Novel mutations in the von Hippel–Lindau gene associated with congenital polycythemia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111073/1/pbc25407.pd
Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities.
This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation
Diffuse intrinsic pontine glioma biopsy: A single institution experience
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109626/1/pbc25224.pd
Recommended from our members
The Effect of Particle Size and Shape on Transport through Confined Channels in three-phase Froths
Multiphase systems (containing solid, liquid and gas) are increasingly common in a number of industries, with the most complex manifestation being three-phase froth. The interstitial suspension has to navigate tortuous channels and its transport is affected by drag, capillary and gravitational forces. Particle properties such as wettability, size, shape, and morphology results in a number of different types of interactions with the liquid-air interface and can have a significant effect on froth composition and stability. The effect of particle size and shape on its transport through these confined channels is thus of great interest for a number of industrial applications and is the focus of this work. This transport behavior is studied using a three phase transient froth that is produced in the froth flotation process for mineral separation. In this system, hydrophilic non-value particles present in the interstitial liquid phase do not attach to air bubbles, and their removal is desirable. The original hypothesis was that as particles become more anisotropic in shape, there is an increase in the froth interstitial viscosity, which results in reduced drainage rate of particles through the froth. Flotation experiments, froth sampling experiments, and rheological experiments were conducted to test this hypothesis.
Froth zone sampling experiments were conducted using mixtures of sized platy mica, needle-like wollastonite, and fibrous chrysotile, all mixed with low aspect ratio silica in varying amounts. The froth zone suspension compositions were then used to prepare the froth interstitial suspension ex-situ, and bulk rheological measurements were conducted on the suspensions. The data showed that while the relative viscosities of the suspensions were much higher at even low concentrations of the fibrous ore in the mixture, there was no significant difference when mica was substituted for silica in the mixture at high concentrations (~50 wt%) at the solids volume fraction of interest (~7.5%). The bulk rheological measurements thus could not fully account for the difference in transport behavior between mica and silica. Flotation experiments were conducted with a copper mineral-containing ore augmented with additional hydrophilic minerals mica, silica (low aspect ratio), wollastonite or chrysotile. The results suggest increasing aspect ratios of the added non-value particles result in increased net transport (transport accounting for loss due to drainage) through the froth zone; mica transport is faster than silica. Froth zone sampling experiments (using pure mixtures of above minerals) confirmed that mica net transport was greater than that of silica. It was then hypothesized that this increase was due to increased drag experienced by high aspect ratio mica compared to low aspect ratio silica. The doped ore flotation data also suggested a decrease in transport as size of added platy mica increased until a local transport minimum was reached, beyond which another increase in transport was observed. It was further hypothesized that this was related to confinement of coarse mica particles in the plateau borders when the size of the constriction was comparable to particle size.
Froth sampling experiments under high drag (upward flow dominated) conditions were compared with those under conditions where drag and drainage were more balanced (steady state froths). Under high drag conditions, mica mixtures showed more hydrophilic mineral mass in the froth zone compared to silica mixtures. Under drag and drainage-balanced conditions when the size of mica approached the size of the measured channel size, platy mica was found to be accumulating in the froth. This was not the case for silica particles with settling being more efficient for silica than for mica. The key parameters driving transport of particles through the froth are the bulk rheology of the interstitial suspension (driven by particle size and shape distributions and solids concentration), the size of constrictions in the plateau borders and vertices and the resulting confinement effects, and the mobility or elasticity of the interfaces (driven largely by the hydrophobic particles attached at the interface)
On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes
In this paper, a comparative study is done on the time and frequency domain
tuning strategies for fractional order (FO) PID controllers to handle higher
order processes. A new fractional order template for reduced parameter modeling
of stable minimum/non-minimum phase higher order processes is introduced and
its advantage in frequency domain tuning of FOPID controllers is also
presented. The time domain optimal tuning of FOPID controllers have also been
carried out to handle these higher order processes by performing optimization
with various integral performance indices. The paper highlights on the
practical control system implementation issues like flexibility of online
autotuning, reduced control signal and actuator size, capability of measurement
noise filtration, load disturbance suppression, robustness against parameter
uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure
An Insight into the Bio Medical Waste Management Status of Alwar using Indicators and Sub-Indicators
The United Nations in 2015 adopted seventeen sustainable development goals among which good health and wellbeing for all is one of them to be achieved by 2030. Thus, continuous improvements in the health sector have become the primary focus of governments around the globe. The irony is that the medical sector which are our main agencies of health have become a major source of infectious pollutants due to the byproducts released from them after the utilization of these services. The waste generated from health care facilities is called bio medical waste in India; though it has various terminologies which are used widely in different countries across the globe making it all the more complicated to be handled. Already bio medical waste has been regarded as the second most hazardous waste after radioactive waste thus making it essential to be regularized by rules and regulations. Such rules are found to exist all around the world. But the poor management of bio medical waste in developing countries raises some pertinent questions regarding the enforcement of these rules. We through our article are presenting the important parameters that can be a boon for the sustainable management of bio medical waste. These parameters are called indicators or sub indicators and are six in number and indicate how efficiently a health care facility is managing its bio medical waste
- …
