30 research outputs found

    Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane

    Get PDF
    In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant’s ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions

    Long term measures of vestibulo-ocular reflex function in high level male gymnasts and its possible role during context specific rotational tasks.

    No full text
    In a prior publication, we described a previously unknown eye movement phenomenon during the execution of actively performed multiaxial rotations in high level gymnasts. This phenomenon was consistently observed during the phase of fast free flight rotations and was marked by a prolonged and complete suppression of nystagmus and gaze stabilizing "environment referenced eye movements" (EREM; such as the vestibulo-ocular reflex, optokinetic reflex, smooth pursuit and others). Instead, these eye movements were coupled with intersegmental body movements. We have therefore called it "spinal motor-coupled eye movements" (SCEM) and have interpreted the phenomenon to likely be caused by anti-compensatory functions of more proprioceptive mediated reflexes and perhaps other mechanisms (e.g., top-down regulation as part of a motor plan) to effectively cope with a new-orientation in space, undisturbed by EREM functions. In the phase before landing, the phenomenon was replaced again by the known gaze-stabilizing EREM functions. The present study specifically evaluated long-term measures of vestibulo-ocular reflex functions (VOR) in high level gymnasts and controls during both passively driven monoaxial rotations and context-specific multiaxial somersault simulations in a vestibular lab. This approach provided further insights into the possible roles of adaptive or mental influences concerning the VOR function and how they are associated with the described phenomenon of SCEM. Results showed high inter-individual variability of VOR function in both gymnasts and controls, but no systematic adaptation of the VOR in gymnasts, neither compared to controls nor over a period of three years. This might generally support the hypothesis that the phenomenon of SCEM might indeed be driven more by proprioceptively mediated and situationally dominant eye movement functions than by adaptative processes of the VOR

    The Importance of Stimulus Noise Analysis for Self-Motion Studies

    Get PDF
    Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-toNoise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception

    Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements

    No full text
    Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model

    Angle-time characteristics.

    No full text
    <p>Examples of angle vs. time characteristics of eye and corresponding planes of body movements during the suppression phase of a double-twisting backward somersault and the Pearson correlation coefficients. The definition of the variables is summarized in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095450#pone-0095450-t001" target="_blank">Table 1</a>.</p

    Hula movements.

    No full text
    <p>Examples of pelvis trajectories, lumbar spine movements and activation of the m. erector spinae during single- vs. double-twisting backward somersaults of one of the gymnasts. The trajectories of the pelvis on top of the figure are projected from a top perspective during a virtual “fixed athlete function” of the software. This function fixes the feet of the multiaxial moving model at the bottom, for better identification of the pure intersegmental movements. For a clearer identification of the “hula movement”, the pelvis trajectory line was depicted by calculating the middle between the left and the right pelvis markers (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095450#pone.0095450.s002" target="_blank">Video S2</a>). The plots below show the actual motion of the lumbar spine in the sagittal plane [flexion (+); extension (−)] and the neuromuscular activation (EMG) of the m. erector spinae (named “Lumbar ES” in the plots). The thick black box marks the duration of the whole movement sequence (from the beginning to the end of the pelvis trajectory depiction). The thinner vertical lines provide a better demonstration of the temporal relationships between the plots. A detailed definition of the kinematic variables is summarized in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095450#pone-0095450-t001" target="_blank">Table 1</a>.</p
    corecore