540 research outputs found
Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations
Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C1-C4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels.Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10-3 consistent with direct observations by other investigators within the crater rim. © 2010
Pathophysiological Implications of Different Bicuspid Aortic Valve Configurations
There are numerous types of bicuspid aortic valve (BAV) configurations. Recent findings suggest that various BAV types represent different pathophysiological substrates on the aortic media level. Data imply that the BAV type is probably not related to location and extent of the aneurysm. However, BAV type is likely linked to the severity of aortic media disease. Some BAVs with raphe seem more aggressive than BAV without a raphe. Cusp fusion pattern, altered hemodynamics, and the qualitative severity of the disease in the aortic media might on the one hand share the same substrate. On the other hand, the aortopathy's longitudinal extent and location may represent a different pathophysiological substrate, probably dictated by the heritable aspects of BAV disease. The exact nature of the relation between BAV type and the aneurysm's location and extent as well as to the risk of aortic complications remains unclear. This paper reviews results of recent human and experimental studies on the significance of BAV types for local aortic media disease and location and extent of the aortopathy. We describe the known and hypothesized hemodynamic and hereditary factors that may result in aortic aneurysm formation in BAV patients
Recommended from our members
Measurements of nonmethane hydrocarbons in 28 United States cities
Between 1999 and 2005 a sampling campaign was conducted to identify and quantify the major species of atmospheric nonmethane hydrocarbons (NMHCs) in United States cities. Whole air canister samples were collected in 28 cities and analyzed for methane, carbon monoxide (CO) and NMHCs. Ambient mixing ratios exhibited high inter- and intra-city variability, often having standard deviations in excess of 50% of the mean value. For this reason, ratios of individual NMHC to CO, a combustion tracer, were examined to facilitate comparison between cities. Ratios were taken from correlation plots between the species of interest and CO, and most NMHCs were found to have correlation coefficients (r2) greater than 0.6, particularly ethene, ethyne and benzene, highlighting the influence of vehicular emissions on NMHC mixing ratios. Notable exceptions were the short-chain alkanes, which generally had poor correlations with CO. Ratios of NMHC vs. CO were also used to identify those cities with unique NMHC sources. © 2007 Elsevier Ltd. All rights reserved
Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS
Actinic flux, as well as aerosol chemical and optical properties, were measured aboard the NASA DC-8 aircraft during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) mission in Spring and Summer 2008. These measurements were used in a radiative transfer code to retrieve spectral (350-550 nm) aerosol single scattering albedo (SSA) for biomass burning plumes encountered on 17 April and 29 June. Retrieved SSA values were subsequently used to calculate the absorption Angstrom exponent (AAE) over the 350-500 nm range. Both plumes exhibited enhanced spectral absorption with AAE values that exceeded 1 (6.78 ± 0.38 for 17 April and 3.34 ± 0.11 for 29 June). This enhanced absorption was primarily due to organic aerosol (OA) which contributed significantly to total absorption at all wavelengths for both 17 April (57.7%) and 29 June (56.2%). OA contributions to absorption were greater at UV wavelengths than at visible wavelengths for both cases. Differences in AAE values between the two cases were attributed to differences in plume age and thus to differences in the ratio of OA and black carbon (BC) concentrations. However, notable differences between AAE values calculated for the OA (AAEOA) for 17 April (11.15 ± 0.59) and 29 June (4.94 ± 0.19) suggested differences in the plume AAE values might also be due to differences in organic aerosol composition. The 17 April OA was much more oxidized than the 29 June OA as denoted by a higher oxidation state value for 17 April (+0.16 vs. -0.32). Differences in the AAEOA, as well as the overall AAE, were thus also possibly due to oxidation of biomass burning primary organic aerosol in the 17 April plume that resulted in the formation of OA with a greater spectral-dependence of absorption. © Author(s) 2012. CC Attribution 3.0 License
Adaptive thermal compensation of test masses in advanced LIGO
As the first generation of laser interferometric gravitational wave detectors
near operation, research and development has begun on increasing the
instrument's sensitivity while utilizing the existing infrastructure. In the
Laser Interferometer Gravitational Wave Observatory (LIGO), significant
improvements are being planned for installation in ~2007, increasing strain
sensitivity through improved suspensions and test mass substrates, active
seismic isolation, and higher input laser power. Even with the highest quality
optics available today, however, finite absorption of laser power within
transmissive optics, coupled with the tremendous amount of optical power
circulating in various parts of the interferometer, result in critical
wavefront deformations which would cripple the performance of the instrument.
Discussed is a method of active wavefront correction via direct thermal
actuation on optical elements of the interferometer. A simple nichrome heating
element suspended off the face of an affected optic will, through radiative
heating, remove the gross axisymmetric part of the original thermal distortion.
A scanning heating laser will then be used to remove any remaining
non-axisymmetric wavefront distortion, generated by inhomogeneities in the
substrate's absorption, thermal conductivity, etc. A proof-of-principle
experiment has been constructed at MIT, selected data of which are presented.Comment: 11 pages, 7 figures, submitted to Classical and Quantum Gravit
Recommended from our members
Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2
An extensive set of carbonyl sulfide (OCS) observations were made as part of the NASA Intercontinental Chemical Transport Experiment-North America (INTEX-NA) study, flown from 1 July to 14 August 2004 mostly over the eastern United States and Canada. These data show that summertime OCS mixing ratios at low altitude were dominated by surface drawdown and were highly correlated with CO2. Although local plumes were observed on some low-altitude flight legs, anthropogenic OCS sources were small compared to this sink. These INTEX-NA observations were in marked contrast to the early springtime 2001 Transport and Chemical Evolution over the Pacific experiment, which sampled Asian outflow dominated by anthropogenic OCS emissions. To test the gridded OCS fluxes used in past models, the INTEX-NA observations were combined with the sulfur transport Eulerian model (STEM) regional atmospheric chemistry model for a top-down assessment of bottom-up OCS surface fluxes for North America. Initial STEM results suggest that the modeled fluxes underestimate the OCS plant sink by more than 200%. Copyright 2008 by the American Geophysical Union
Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures
We present a method to characterize the spatial coherence of soft X-ray
radiation from a single diffraction pattern. The technique is based on
scattering from non-redundant arrays (NRA) of slits and records the degree of
spatial coherence at several relative separations from one to 15 microns,
simultaneously. Using NRAs we measured the transverse coherence of the X-ray
beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as
a function of different beam parameters. To verify the results obtained with
the NRAs additional Young's double pinhole experiments were conducted and show
good agreement.Comment: 15 pages, 6 figures, 2 tables, 42 reference
Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range
We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation
Observational evidence for the convective transport of dust over the central United States
Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (\u3c5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude \u3e 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm \u3c diameter \u3c 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter \u3e 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm \u3c diameter \u3c 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15–300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ
- …