329 research outputs found

    Modeling an offshore container terminal: the Venice case study

    Get PDF
    In order to reduce marine transportation times and related costs, as well as the environmental impacts, an alternative multimodal route to the current Suez-Gibraltar-North Sea corridor for the containers shipped from Far and Middle East was identified as potentially very effective. A key operational problem to achieve this result is the capacity and the effectiveness of the terminals within the concerned new logistic chain. In this framework, the Venice Port Authority is developing a project aimed to improve relevantly the potential of its container terminals to al-low loading/unloading of containers to and from the Central Europe. The project includes a new offshore terminal for mooring huge ships (up to 18.000 TEU) in the Adriatic Sea and a link operated by barges with an onshore terminal in Venice to overcome the constraints for the navigation of the containers ships in the Venetian lagoon. This innovative operational scheme requires a deep functional analysis to ensure the full capacity operation, assess the reachable performances and correspondingly dimensioning the required equipment (cranes, barges, quays, etc.). For this purpose, the authors developed a specific discrete-events simulation model. The paper includes the presentation of the model and the results of its application to Venice case study, by identifying the benefits achievable with this approach and the potential wider application fields

    Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice

    Get PDF
    Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF) patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656(T). Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts

    I requisiti degli strumenti di capitale primario di classe 1 Appunti per uno studio del capitale delle banche

    Get PDF
    The need for stability in the financial and economic system arising from the outcome of the most significant of the recent financial crises was the premise for the regulation of banking capital developed by the Basel Committee. In a short time, to respond to similar needs, the European legislator has profoundly renewed the European banking regulation with the result of creating the Single Rulebook. A significant part of this harmonization tool is entrusted to Regulation 575/2013 on prudential require- ments (Capital Requirement Regulation, CRR). The CRR identifies capital requirements of banks by determining the rules for the formation of bank capital and the balance ratios between the various elements of bank financing based on the riskiness of the assets. Common equity tier 1 (CET1) is one of the fundamental components of bank capital. The study sets out the structural elements of bank capital and the requisites that the capital instruments must possess in order to be classified as CET1. Furthermore, the essay highlights those profiles in which the prudential discipline overlaps the corporate one and notes those issues on which further analysis of the relationship between the disciplines could be focused

    Organic matter quality of forest floor as a driver of C and P dynamics in acacia and eucalypt plantations established on a Ferralic Arenosols, Congo

    Get PDF
    Abstract Background Land-use change and forest management may alter soil organic matter (SOM) and nutrient dynamics, due in part to alterations in litter input and quality. Acacia was introduced in eucalypt plantations established in the Congolese coastal plains to improve soil fertility and tree growth. Eucalypt trees were expected to benefit from N2 fixed by acacia. However, some indicators suggest a perturbation in SOM and P dynamics might affect the sustainability of the system in the medium and long term. In tropical environments, most of the nutrient processes are determined by the high rates of organic matter (OM) mineralization. Therefore, SOM stability might play a crucial role in regulating soil-plant processes. In spite of this, the relationship between SOM quality, C and other nutrient dynamics are not well understood. In the present study, OM quality and P forms in forest floor and soil were investigated to get more insight on the C and P dynamics useful to sustainable management of forest plantations. Methods Thermal analysis (differential scanning calorimetry (DSC) and thermogravimetry (TGA)) and nuclear magnetic resonance (solid state 13C CPMASS and NMR and 31P-NMR) spectroscopy have been applied to partially decomposed forest floor and soils of pure acacia and eucalypt, and mixed-species acacia-eucalypt stands. Results Thermal analysis and 13C NMR analysis revealed a more advanced stage of humification in forest floor of acacia-eucalypt stands, suggesting a greater microbial activity in its litter. SOM were related to the OM recalcitrance of the forest floor, indicating this higher microbial activity of the forest floor in this stand might be favouring the incorporation of C into the mineral soil. Conclusions In relation with the fast mineralization in this environment, highly soluble orthophosphate was the dominant P form in both forest floor and soils. However, the mixed-species forest stands immobilized greater P in organic forms, preventing the P losses by leaching and contributing to sustain the P demand in the medium term. This shows that interactions between plants, microorganisms and soil can sustain the demand of this ecosystem. For this, the forest floor plays a key role in tightening the P cycle, minimizing the P losses

    Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates

    Get PDF
    In this study, we evaluated if recA species-specific PCR assays could be successfully applied to identify environmental isolates of the widespread Burkholderia cepacia complex (Bcc) species. A total of 729 Bcc rhizosphere isolates collected in different samplings were assigned to the species B. cepacia genomovar I (61), B. cenocepacia recA lineage IIIB (514), B. ambifaria (124) and B. pyrrocinia (30), by means of recA (RFLP) analysis, and PCR tests were performed to assess sensitivity and specificity of recA species-specific primers pairs. B. cepacia genomovar I specific primers produced the expected amplicon with all isolates of the corresponding species (sensitivity, 100%), and cross-reacted with all B. pyrrocinia isolates. On the contrary, B. cenocepacia IIIB primers did not give the expected amplicon in 164 B. cenocepacia IIIB isolates (sensitivity, 68.1%), and isolates of distinct populations showed different sensitivity. B. ambifaria primers failed to amplify a recA-specific fragment only in a few isolates of this species (sensitivity, 93.5%). The absence of specific amplification in a high number of B. cenocepacia rhizosphere isolates indicates that recA specific PCR assays can lead to an underestimation of environmental microorganisms belonging to this bacterial species

    Soil organic matter quality along rotations in acacia and eucalypt plantations in the Congolese coastal plains

    Get PDF
    Abstract Background Afforestation of savannas in the Congolese coastal plains with eucalypt has provided wood pulp for industry and fuel energy for the local population. Typically, following afforestation, Acacia mangium are introduced to improve soil fertility and sustain productivity. Through investigations of particulate organic matter (POM), potential soil organic matter (SOM) quality was assessed in acacia and eucalypt plantations along rotations. Methods Nutrients in POM (4000–50 μm) in the 0–5 cm soil layer were measured after five years into the second rotation (R2Y5) in relation to soil pH and P availability. Data were compared to those at the end of the first 7-year-rotation (R1Y7) and after two years into the second rotation (R2Y2) to evaluate overall SOM quality in the topsoil. Results At R2Y5, soil pH was higher in the pure eucalypt stands (100E) than in stands containing acacia, either in monoculture (100A) or evenly mixed with eucalypt (50A50E). Coarse POM (cPOM, 4000–250 μm) beneath 100A had the highest N concentration (1.71%), followed by those beneath 50A50E (1.42%) and 100E (1.30%). Higher N was always found in the stands containing acacia. Lower sulphur (S) concentrations and P availabilities were observed in cPOM (50A50E). The greatest amount of coarse (414.7 g) and fine (214.5 g) forest floor litter were found in 100A stands, whereas higher C concentrations were found in the 100E stands for coarse forest floor litter (36.5%) and in the 50A50E stands for fine forest floor litter (38.7%). The decrease in cPOM N and C concentrations were lower than 20% (R1Y7) and 26% (R2Y5) relative to the younger stage (R2Y2). This tendency was more pronounced in fine POM (250–50 μm) and organo-mineral fraction (< 50 μm). Conclusions The main changes occurred in cPOM beneath stands containing acacia while higher weight of forest floor litter was found in 100A. Soil pH decreased in stands containing acacia. Overall N and C dynamics was enhanced in older stands (R2Y5) than in the younger stands (R2Y2). This may reveal a creation of more labile SOM with lower N and C concentrations in POM fractions in the surface layer, i.e., an ecosystem with a lower potential to mitigate climate change along rotations

    Suggestioni per una tipologia di interazioni tra diritto e mercato

    Get PDF
    Starting from the traditional ‘law and marketplace’ hendiadys, the paper analyses this relationship as a combination of two phenomenal realities with a method- ology aimed to capture a functional relations between them. In order to achieve this aim, three types of interaction between law and marketplace – comparison, concretization and conception – were examined. They demonstrate the possibility of reconciling two semantics that are frequently considered non-convergent

    deciphering the ecology of cystic fibrosis bacterial communities towards systems level integration

    Get PDF
    Despite over a decade of cystic fibrosis (CF) microbiome research, much remains to be learned about the overall composition, metabolic activities, and pathogenicity of the microbes in CF airways, limiting our understanding of the respiratory microbiome's relation to disease. Systems-level integration and modeling of host–microbiome interactions may allow us to better define the relationships between microbiological characteristics, disease status, and treatment response. In this way, modeling could pave the way for microbiome-based development of predictive models, individualized treatment plans, and novel therapeutic approaches, potentially serving as a paradigm for approaching other chronic infections. In this review, we describe the challenges facing this effort and propose research priorities for a systems biology approach to CF lung disease
    • …
    corecore