242 research outputs found
A computationally efficient method for probabilistic parameter threshold analysis for health economic evaluations
Background. Threshold analysis is used to determine the threshold value of an input parameter at which a health care strategy becomes cost-effective. Typically, it is performed in a deterministic manner, in which inputs are varied one at a time while the remaining inputs are each fixed at their mean value. This approach will result in incorrect threshold values if the cost-effectiveness model is nonlinear or if inputs are correlated. Objective. To propose a probabilistic method for performing threshold analysis, which accounts for the joint uncertainty in all input parameters and makes no assumption about the linearity of the cost-effectiveness model. Methods. Three methods are compared: 1) deterministic threshold analysis (DTA); 2) a 2-level Monte Carlo approach, which is considered the gold standard; and 3) a regression-based method using a generalized additive model (GAM), which identifies threshold values directly from a probabilistic sensitivity analysis sample. Results. We applied the 3 methods to estimate the minimum probability of hospitalization for typhoid fever at which 3 different vaccination strategies become cost-effective in Uganda. The threshold probability of hospitalization at which routine vaccination at 9 months with catchup campaign to 5 years becomes cost-effective is estimated to be 0.060 and 0.061 (95% confidence interval [CI], 0.058–0.064), respectively, for 2-level and GAM. According to DTA, routine vaccination at 9 months with catchup campaign to 5 years would never become cost-effective. The threshold probability at which routine vaccination at 9 months with catchup campaign to 15 years becomes cost-effective is estimated to be 0.092 (DTA), 0.074 (2-level), and 0.072 (95% CI, 0.069–0.075) (GAM). GAM is 430 times faster than the 2-level approach. Conclusions. When the cost-effectiveness model is nonlinear, GAM provides similar threshold values to the 2-level Monte Carlo approach and is computationally more efficient. DTA provides incorrect results and should not be used
The age profile of respiratory syncytial virus burden in preschool children of low- and middle-income countries: a semi-parametric, meta-regression approach
BACKGROUND: Respiratory syncytial virus (RSV) infections are among the primary causes of death for children under 5 years of age worldwide. A notable challenge with many of the upcoming prophylactic interventions against RSV is their short duration of protection, making the age profile of key interest to the design of prevention strategies. METHODS AND FINDINGS: We leverage the RSV data collected on cases, hospitalizations, and deaths in a systematic review in combination with flexible generalized additive mixed models (GAMMs) to characterize the age burden of RSV incidence, hospitalization, and hospital-based case fatality rate (hCFR). Due to the flexible nature of GAMMs, we estimate the peak, median, and mean incidence of infection to inform discussions on the ideal "window of protection" of prophylactic interventions. In a secondary analysis, we reestimate the burden of RSV in all low- and middle-income countries. The peak age of community-based incidence is 4.8 months, and the mean and median age of infection is 18.9 and 14.7 months, respectively. Estimating the age profile using the incidence coming from hospital-based studies yields a slightly younger age profile, in which the peak age of infection is 2.6 months and the mean and median age of infection are 15.8 and 11.6 months, respectively. More severe outcomes, such as hospitalization and in-hospital death have a younger age profile. Children under 6 months of age constitute 10% of the population under 5 years of age but bear 20% to 29% of cases, 28% to 39% of hospitalizations, and 38% to 50% of deaths. On an average year, we estimate 28.23 to 31.34 million cases of RSV, between 2.95 to 3.35 million hospitalizations, and 16,835 to 19,909 in-hospital deaths in low, lower- and upper middle-income countries. In addition, we estimate 17,254 to 23,875 deaths in the community, for a total of 34,114 to 46,485 deaths. Globally, evidence shows that community-based incidence may differ by World Bank Income Group, but not hospital-based incidence, probability of hospitalization, or the probability of in-hospital death (p ≤ 0.01, p = 1, p = 0.86, 0.63, respectively). Our study is limited mainly due to the sparsity of the data, especially for low-income countries (LICs). The lack of information for some populations makes detecting heterogeneity between income groups difficult, and differences in access to care may impact the reported burden. CONCLUSIONS: We have demonstrated an approach to synthesize information on RSV outcomes in a statistically principled manner, and we estimate that the age profile of RSV burden depends on whether information on incidence is collected in hospitals or in the community. Our results suggest that the ideal prophylactic strategy may require multiple products to avert the risk among preschool children
Exploratory Analysis of the Economically Justifiable Price of a Hypothetical RSV Vaccine for Older Adults in the Netherlands and the United Kingdom
BACKGROUND: In older adults, the burden of respiratory syncytial virus (RSV) resembles that of influenza and may even be considered worse due to the lack of preventive interventions. This study was performed to identify the available literature on RSV infection in older adults, and to provide updated exploratory results of the cost-effectiveness of a hypothetical RSV vaccine in the Netherlands and the United Kingdom. METHODS: A literature search was performed in Medline and EMBASE on 11 November 2019, which served as input for a static decision-tree model that was used to estimate the EJP, for an RSV vaccine applying different willingness-to-pay (WTP) thresholds. WTP thresholds applied were €20 000 and €50 000 per quality-adjusted life-year for the Netherlands, and £20 000 and £30 000 per quality-adjusted life-year for the United Kingdom. Analyses were—in line with country-specific guidelines—conducted from a societal perspective for the Netherlands and a third-party payer perspective for the United Kingdom. The robustness of the cost-effectiveness results was tested in sensitivity analysis. RESULTS: After screening the literature, 3 studies for the Netherlands and 6 for the United Kingdom remained to populate the country-specific models. In the base case analysis for the Netherlands (mean RSV incidence, 3.32%), justifiable vaccine prices of €16.38 and €50.03 were found, based on applying the lower and higher WTP thresholds, respectively. Similarly, for the United Kingdom (mean incidence, 7.13%), vaccine prices of £72.29 and £109.74 were found, respectively. CONCLUSION: RSV vaccination may well be cost-effective in both the Netherlands and the United Kingdom, depending on the exact RSV incidence, vaccine effectiveness and price. However, sensitivity analysis showed that the results were robust based on varying the different parameter estimates and assumptions. With RSV vaccines reaching the final stages of development, a strong need exists for cost-effectiveness studies to understand economically justifiable pricing of the vaccine
Pregnancy during COVID-19: social contact patterns and vaccine coverage of pregnant women from CoMix in 19 European countries.
BACKGROUND
Evidence and advice for pregnant women evolved during the COVID-19 pandemic. We studied social contact behaviour and vaccine uptake in pregnant women between March 2020 and September 2021 in 19 European countries.
METHODS
In each country, repeated online survey data were collected from a panel of nationally-representative participants. We calculated the adjusted mean number of contacts reported with an individual-level generalized additive mixed model, modelled using the negative binomial distribution and a log link function. Mean proportion of people in isolation or quarantine, and vaccination coverage by pregnancy status and gender were calculated using a clustered bootstrap.
FINDINGS
We recorded 4,129 observations from 1,041 pregnant women, and 115,359 observations from 29,860 non-pregnant individuals aged 18-49. Pregnant women made slightly fewer contacts (3.6, 95%CI = 3.5-3.7) than non-pregnant women (4.0, 95%CI = 3.9-4.0), driven by fewer work contacts but marginally more contacts in non-essential social settings. Approximately 15-20% pregnant and 5% of non-pregnant individuals reported to be in isolation and quarantine for large parts of the study period. COVID-19 vaccine coverage was higher in pregnant women than in non-pregnant women between January and April 2021. Since May 2021, vaccination in non-pregnant women began to increase and surpassed that in pregnant women.
INTERPRETATION
Limited social contact to avoid pathogen exposure during the COVID-19 pandemic has been a challenge to many, especially women going through pregnancy. More recognition of maternal social support desire is needed in the ongoing pandemic. As COVID-19 vaccination continues to remain an important pillar of outbreak response, strategies to promote correct information can provide reassurance and facilitate informed pregnancy vaccine decisions in this vulnerable group
Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk
BACKGROUND: Realistic models of disease transmission incorporating complex population heterogeneities require input from quantitative population mixing studies. We use contact diaries to assess the relative importance of social settings in respiratory pathogen spread using three measures of person contact hours (PCH) as proxies for transmission risk with an aim to inform bipartite network models of respiratory pathogen transmission. METHODS AND FINDINGS: Our survey examines the contact behaviour for a convenience sample of 65 adults, with each encounter classified as occurring in a work, retail, home, social, travel or "other" setting. The diary design allows for extraction of PCH-interaction (cumulative time in face-face conversational or touch interaction with contacts)--analogous to the contact measure used in several existing surveys--as well as PCH-setting (product of time spent in setting and number of people present) and PCH-reach (product of time spent in setting and number of people in close proximity). Heterogeneities in day-dependent distribution of risk across settings are analysed using partitioning and cluster analyses and compared between days and contact measures. Although home is typically the highest-risk setting when PCH measures isolate two-way interactions, its relative importance compared to social and work settings may reduce when adopting a more inclusive contact measure that considers the number and duration of potential exposure events. CONCLUSIONS: Heterogeneities in location-dependent contact behaviour as measured by contact diary studies depend on the adopted contact definition. We find that contact measures isolating face-face conversational or touch interactions suggest that contact in the home dominates, whereas more inclusive contact measures indicate that home and work settings may be of higher importance. In the absence of definitive knowledge of the contact required to facilitate transmission of various respiratory pathogens, it is important for surveys to consider alternative contact measures
Precautionary Behavior in Response to Perceived Threat of Pandemic Influenza
Public transportation was regarded as the most risky place and home as the least risky
Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium
<p>Abstract</p> <p>Background</p> <p>Until recently, mathematical models of person to person infectious diseases transmission had to make assumptions on transmissions enabled by personal contacts by estimating the so-called WAIFW-matrix. In order to better inform such estimates, a population based contact survey has been carried out in Belgium over the period March-May 2006. In contrast to other European surveys conducted simultaneously, each respondent recorded contacts over two days. Special attention was given to holiday periods, and respondents with large numbers of professional contacts.</p> <p>Methods</p> <p>Participants kept a paper diary with information on their contacts over two different days. A contact was defined as a two-way conversation of at least three words in each others proximity. The contact information included the age of the contact, gender, location, duration, frequency, and whether or not touching was involved.</p> <p>For data analysis, we used association rules and classification trees. Weighted generalized estimating equations were used to analyze contact frequency while accounting for the correlation between contacts reported on the two different days.</p> <p>A contact surface, expressing the average number of contacts between persons of different ages was obtained by a bivariate smoothing approach and the relation to the so-called next-generation matrix was established.</p> <p>Results</p> <p>People mostly mixed with people of similar age, or with their offspring, their parents and their grandparents. By imputing professional contacts, the average number of daily contacts increased from 11.84 to 15.70. The number of reported contacts depended heavily on the household size, class size for children and number of professional contacts for adults. Adults living with children had on average 2 daily contacts more than adults living without children. In the holiday period, the daily contact frequency for children and adolescents decreased with about 19% while a similar observation is made for adults in the weekend. These findings can be used to estimate the impact of school closure.</p> <p>Conclusion</p> <p>We conducted a diary based contact survey in Belgium to gain insights in social interactions relevant to the spread of infectious diseases. The resulting contact patterns are useful to improve estimating crucial parameters for infectious disease transmission models.</p
Results from evaluations of models and cost-effectiveness tools to support introduction decisions for new vaccines need critical appraisal
The World Health Organization (WHO) recommends that the cost-effectiveness (CE) of introducing new vaccines be considered before such a programme is implemented. However, in low- and middle-income countries (LMICs), it is often challenging to perform and interpret the results of model-based economic appraisals of vaccines that benefit from locally relevant data. As a result, WHO embarked on a series of consultations to assess economic analytical tools to support vaccine introduction decisions for pneumococcal, rotavirus and human papillomavirus vaccines. The objectives of these assessments are to provide decision makers with a menu of existing CE tools for vaccines and their characteristics rather than to endorse the use of a single tool. The outcome will provide policy makers in LMICs with information about the feasibility of applying these models to inform their own decision making. We argue that if models and CE analyses are used to inform decisions, they ought to be critically appraised beforehand, including a transparent evaluation of their structure, assumptions and data sources (in isolation or in comparison to similar tools), so that decision makers can use them while being fully aware of their robustness and limitations
Cost effectiveness of pediatric pneumococcal conjugate vaccines: a comparative assessment of decision-making tools
BACKGROUND: Several decision support tools have been developed to aid policymaking regarding the adoption of pneumococcal conjugate vaccine (PCV) into national pediatric immunization programs. The lack of critical appraisal of these tools makes it difficult for decision makers to understand and choose between them. With the aim to guide policymakers on their optimal use, we compared publicly available decision-making tools in relation to their methods, influential parameters and results. METHODS: The World Health Organization (WHO) requested access to several publicly available cost-effectiveness (CE) tools for PCV from both public and private provenance. All tools were critically assessed according to the WHO's guide for economic evaluations of immunization programs. Key attributes and characteristics were compared and a series of sensitivity analyses was performed to determine the main drivers of the results. The results were compared based on a standardized set of input parameters and assumptions. RESULTS: Three cost-effectiveness modeling tools were provided, including two cohort-based (Pan-American Health Organization (PAHO) ProVac Initiative TriVac, and PneumoADIP) and one population-based model (GlaxoSmithKline's SUPREMES). They all compared the introduction of PCV into national pediatric immunization program with no PCV use. The models were different in terms of model attributes, structure, and data requirement, but captured a similar range of diseases. Herd effects were estimated using different approaches in each model. The main driving parameters were vaccine efficacy against pneumococcal pneumonia, vaccine price, vaccine coverage, serotype coverage and disease burden. With a standardized set of input parameters developed for cohort modeling, TriVac and PneumoADIP produced similar incremental costs and health outcomes, and incremental cost-effectiveness ratios. CONCLUSIONS: Vaccine cost (dose price and number of doses), vaccine efficacy and epidemiology of critical endpoint (for example, incidence of pneumonia, distribution of serotypes causing pneumonia) were influential parameters in the models we compared. Understanding the differences and similarities of such CE tools through regular comparisons could render decision-making processes in different countries more efficient, as well as providing guiding information for further clinical and epidemiological research. A tool comparison exercise using standardized data sets can help model developers to be more transparent about their model structure and assumptions and provide analysts and decision makers with a more in-depth view behind the disease dynamics. Adherence to the WHO guide of economic evaluations of immunization programs may also facilitate this process. Please see related article: http://www.biomedcentral.com/1741-7007/9/55
Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19
After a steep monotone rise with age, the seroprevalence profiles for human parvovirus B19 (PVB19) display a decrease or plateau between the ages of 20 and 40, in each of 5 European countries. We investigate whether this phenomenon is induced by waning antibodies for PVB19 and, if this is the case, whether secondary infections are plausible, or whether boosting may occur. Several immunological scenarios are tested for PVB19 by fitting different compartmental dynamic transmission models to serological data using data on social contact patterns. The social contact approach has already been shown informative to estimate transmission rates and the basic reproduction number for infections transmitted predominantly through nonsexual social contacts. Our results show that for 4 countries, model selection criteria favor the scenarios allowing for waning immunity at an age-specific rate over the assumption of lifelong immunity, assuming that the transmission rates are directly proportional to the contact rates. Different views on the evolution of the immune response to PVB19 infection lead to altered estimates of the age-specific force of infection and the basic reproduction number. The scenarios which allow for multiple infections during one lifetime predict a higher frequency of PVB19 infection in pregnant women and of associated fetal deaths. When prevaccination serological data are available, the framework developed in this paper could prove worthwhile to investigate these different scenarios for other infections as well, such as cytomegalovirus
- …