631 research outputs found

    Dutch survey pyrrolizidine alkaloids in animal forage

    Get PDF
    Pyrrolizidine alkaloids (PAs) are secondary plant metabolites produced by a number of plants from the Asteraceae (Compositae), Boriginaceae and Fabaceae (Leguminosae) families. Many of these alkaloids have been shown to be highly toxic, causing hepatic veno-occlusive disease (VOD), liver cirrhosis and ultimately death. PAs may have also mutagenic and carcinogenic potential. Amongst livestock, cattle and horses are especially susceptible to the toxic effects of the PAs. Humans may also be at risk by the consumption of milk of livestock fed with PA-contaminated forage. At RIKILT - Institute of Food Safety a (semi)quantitative method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of PAs in animal feeds has been developed and validated. This method comprises 40 macrocyclic PAs (including tertiary amines and N-oxides) representative for ragwort species. The method has been used for the analysis of 147 forage samples collected in 2006-2008

    Coli-achtigen en E. coli in koe, melk en boerenkaas

    Get PDF
    Deze bacteriën zijn niet gewenst in boerenkaas, omdat ze o.a. smaakafwijkingen kunnen veroorzaken. E. coli kan bovendien ziekte veroorzaken

    The Cystic Fibrosis-Like Airway Surface Layer Is not a Significant Barrier for Delivery of Eluforsen to Airway Epithelial Cells

    Get PDF
    Background: Eluforsen (previously known as QR-010) is a 33-mer antisense oligonucleotide under development for oral inhalation in cystic fibrosis (CF) patients with the delta F508 mutation. Previous work has shown that eluforsen restores CF transmembrane conductance regulator (CFTR) function in vitro and in vivo. To be effective, eluforsen has first to reach its primary target, the lung epithelial cells. Therefore, it has to diffuse through the CF airway surface layer (ASL), which in CF is characterized by the presence of thick and viscous mucus, impaired mucociliary clearance, and persistent infections. The goal of this study was to assess delivery of eluforsen through CF-like ASL. Methods and Results: First, air-liquid interface studies with cultured primary airway epithelial cells revealed that eluforsen rapidly diffuses through CF-like mucus at clinically relevant doses when nebulized once or repeatedly, over a range of testing doses. Furthermore, eluforsen concentrations remained stable in CF patient sputum for at least 48 hours, and eluforsen remained intact in the presence of various inhaled CF medications for at least 24 hours. When testing biodistribution of eluforsen after orotracheal administration in vivo, no differences in lung, liver, trachea, and kidney eluforsen concentration were observed between mice with a CF-like lung phenotype (ENaC-overexpressing mice) and control wild-Type (WT) littermates. Also, eluforsen was visualized in the airway epithelial cell layer of CF-like muco-obstructed mice and WT littermates. Finally, studies of eluforsen uptake and binding to bacteria prevalent in CF lungs, and diffusion through bacterial biofilms showed that eluforsen was stable and not absorbed by, or bound to bacteria. In addition, eluforsen was found to be able to penetrate Pseudomonas aeruginosa biofilms. Conclusions: The thickened and concentrated CF ASL does not constitute a significant barrier for delivery of eluforsen, and feasibility of oral inhalation of eluforsen is supported by these data

    On the interplay between hypothermia and reproduction in a high arctic ungulate

    Get PDF
    For free-ranging animals living in seasonal environments, hypometabolism (lowered metabolic rate) and hypothermia (lowered body temperature) can be effective physiological strategies to conserve energy when forage resources are low. To what extent such strategies are adopted by large mammals living under extreme conditions, as those encountered in the high Arctic, is largely unknown, especially for species where the gestation period overlaps with the period of lowest resource availability (i.e. winter). Here we investigated for the first time the level to which high arctic muskoxen (Ovibos moschatus) adopt hypothermia and tested the hypothesis that individual plasticity in the use of hypothermia depends on reproductive status. We measured core body temperature over most of the gestation period in both free-ranging muskox females in Greenland and captive female muskoxen in Alaska. We found divergent overwintering strategies according to reproductive status, where pregnant females maintained stable body temperatures during winter, while non-pregnant females exhibited a temporary decrease in their winter body temperature. These results show that muskox females use hypothermia during periods of resource scarcity, but also that the use of this strategy may be limited to non-reproducing females. Our findings suggest a trade-of between metabolically driven energy conservation during winter and sustaining foetal growth, which may also apply to other large herbivores living in highly seasonal environments elsewhere.publishedVersio
    corecore