94 research outputs found
Clock spectroscopy of interacting bosons in deep optical lattices
We report on high-resolution optical spectroscopy of interacting bosonic
Yb atoms in deep optical lattices with negligible tunneling. We prepare
Mott insulator phases with singly- and doubly-occupied isolated sites and probe
the atoms using an ultra-narrow "clock" transition. Atoms in singly-occupied
sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are
strongly affected by interatomic interactions, and we measure their inelastic
decay rates and energy shifts. We deduce from these measurements all relevant
collisional parameters involving both clock states, in particular the intra-
and inter-state scattering lengths
Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition
We study the dynamics of a two-component Bose-Einstein condensate (BEC) of
Yb atoms coherently driven on a narrow optical transition. The
excitation transfers the BEC to a superposition of states with different
internal and momentum quantum numbers. We observe a crossover with decreasing
driving strength between a regime of damped oscillations, where coherent
driving prevails, and an incoherent regime, where relaxation takes over.
Several relaxation mechanisms are involved: inelastic losses involving two
excited atoms, leading to a non-exponential decay of populations; Doppler
broadening due to the finite momentum width of the BEC and inhomogeneous
elastic interactions, both leading to dephasing and to damping of the
oscillations. We compare our observations to a two-component Gross-Pitaevskii
(GP) model that fully includes these effects. For small or moderate densities,
the damping of the oscillations is mostly due to Doppler broadening. In this
regime, we find excellent agreement between the model and the experimental
results. For higher densities, the role of interactions increases and so does
the damping rate of the oscillations. The damping in the GP model is less
pronounced than in the experiment, possibly a hint for many-body effects not
captured by the mean-field description.Comment: 7 pages, 4 figures; supplementary material available as ancillary
fil
Optimal approach to quantum communication using dynamic programming
Reliable preparation of entanglement between distant systems is an
outstanding problem in quantum information science and quantum communication.
In practice, this has to be accomplished via noisy channels (such as optical
fibers) that generally result in exponential attenuation of quantum signals at
large distances. A special class of quantum error correction protocols--quantum
repeater protocols--can be used to overcome such losses. In this work, we
introduce a method for systematically optimizing existing protocols and
developing new, more efficient protocols. Our approach makes use of a dynamic
programming-based searching algorithm, the complexity of which scales only
polynomially with the communication distance, letting us efficiently determine
near-optimal solutions. We find significant improvements in both the speed and
the final state fidelity for preparing long distance entangled states.Comment: 9 pages, 6 figure
Recent progress on the manipulation of single atoms in optical tweezers for quantum computing
This paper summarizes our recent progress towards using single rubidium atoms
trapped in an optical tweezer to encode quantum information. We demonstrate
single qubit rotations on this system and measure the coherence of the qubit.
We move the quantum bit over distances of tens of microns and show that the
coherence is reserved. We also transfer a qubit atom between two tweezers and
show no loss of coherence. Finally, we describe our progress towards
conditional entanglement of two atoms by photon emission and two-photon
interferences.Comment: Proceedings of the ICOLS07 conferenc
Spatial Light Modulators for the Manipulation of Individual Atoms
We propose a novel dipole trapping scheme using spatial light modulators
(SLM) for the manipulation of individual atoms. The scheme uses a high
numerical aperture microscope to map the intensity distribution of a SLM onto a
cloud of cold atoms. The regions of high intensity act as optical dipole force
traps. With a SLM fast enough to modify the trapping potential in real time,
this technique is well suited for the controlled addressing and manipulation of
arbitrarily selected atoms.Comment: 9 pages, 5 figure
Tunable Indistinguishable Photons From Remote Quantum Dots
Single semiconductor quantum dots have been widely studied within devices
that can apply an electric field. In the most common system, the low energy
offset between the InGaAs quantum dot and the surrounding GaAs material limits
the magnitude of field that can be applied to tens of kVcm^-1, before carriers
tunnel out of the dot. The Stark shift experienced by the emission line is
typically 1 meV. We report that by embedding the quantum dots in a quantum well
heterostructure the vertical field that can be applied is increased by over an
order of magnitude whilst preserving the narrow linewidths, high internal
quantum efficiencies and familiar emission spectra. Individual dots can then be
continuously tuned to the same energy allowing for two-photon interference
between remote, independent, quantum dots
Quantum Interference of Photon Pairs from Two Trapped Atomic Ions
We collect the fluorescence from two trapped atomic ions, and measure quantum
interference between photons emitted from the ions. The interference of two
photons is a crucial component of schemes to entangle atomic qubits based on a
photonic coupling. The ability to preserve the generated entanglement and to
repeat the experiment with the same ions is necessary to implement entangling
quantum gates between atomic qubits, and allows the implementation of protocols
to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure
- …