1,318 research outputs found
Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations
Calibration of the second-generation LIGO interferometric gravitational-wave
detectors employs a method that uses injected periodic modulations to track and
compensate for slow temporal variations in the differential length response of
the instruments. These detectors utilize feedback control loops to maintain
resonance conditions by suppressing differential arm length variations. We
describe how the sensing and actuation functions of these servo loops are
parameterized and how the slow variations in these parameters are quantified
using the injected modulations. We report the results of applying this method
to the LIGO detectors and show that it significantly reduces systematic errors
in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version
of an article published in Classical and Quantum Gravity. IOP Publishing Ltd
is not responsible for any errors or omissions in this version of the
manuscript or any version derived from i
Reconstructing the calibrated strain signal in the Advanced LIGO detectors
Advanced LIGO's raw detector output needs to be calibrated to compute
dimensionless strain h(t). Calibrated strain data is produced in the time
domain using both a low-latency, online procedure and a high-latency, offline
procedure. The low-latency h(t) data stream is produced in two stages, the
first of which is performed on the same computers that operate the detector's
feedback control system. This stage, referred to as the front-end calibration,
uses infinite impulse response (IIR) filtering and performs all operations at a
16384 Hz digital sampling rate. Due to several limitations, this procedure
currently introduces certain systematic errors in the calibrated strain data,
motivating the second stage of the low-latency procedure, known as the
low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses
finite impulse response (FIR) filtering to apply corrections to the output of
the front-end calibration. It applies time-dependent correction factors to the
sensing and actuation components of the calibrated strain to reduce systematic
errors. The gstlal calibration pipeline is also used in high latency to
recalibrate the data, which is necessary due mainly to online dropouts in the
calibrated data and identified improvements to the calibration models or
filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table
Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs
Calibration of the Advanced LIGO detectors is the quantification of the
detectors' response to gravitational waves. Gravitational waves incident on the
detectors cause phase shifts in the interferometer laser light which are read
out as intensity fluctuations at the detector output. Understanding this
detector response to gravitational waves is crucial to producing accurate and
precise gravitational wave strain data. Estimates of binary black hole and
neutron star parameters and tests of general relativity require well-calibrated
data, as miscalibrations will lead to biased results. We describe the method of
producing calibration uncertainty estimates for both LIGO detectors in the
first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013
The Advanced LIGO Photon Calibrators
The two interferometers of the Laser Interferometry Gravitaional-wave
Observatory (LIGO) recently detected gravitational waves from the mergers of
binary black hole systems. Accurate calibration of the output of these
detectors was crucial for the observation of these events, and the extraction
of parameters of the sources. The principal tools used to calibrate the
responses of the second-generation (Advanced) LIGO detectors to gravitational
waves are systems based on radiation pressure and referred to as Photon
Calibrators. These systems, which were completely redesigned for Advanced LIGO,
include several significant upgrades that enable them to meet the calibration
requirements of second-generation gravitational wave detectors in the new era
of gravitational-wave astronomy. We report on the design, implementation, and
operation of these Advanced LIGO Photon Calibrators that are currently
providing fiducial displacements on the order of
m/ with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure
Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar
The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection
candidate was found. We place Bayesian 90% confidence upper limits of 6.3 x 10^(-21) to 1.4 x 10^(-20) on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0 x 10^(-44) to 1.3 x 10^(-45) erg
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave
strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
- …
