3,035 research outputs found

    The brightness distribution of IRC +10216 at 11 microns

    Get PDF
    The brightness distribution of IRC +10216 at a wavelength of 11 microns was measured in detail using a spatial interferometer. This brightness distribution appears to have azimuthal symmetry; an upper limit of 1.1 may be set to the ellipticity at 11 microns if the object has a major axis oriented either along or perpendicular to the major axis of the optical image. The radial distribution shows both compact and extended emission. The extended component, which is due to thermal emission from circumstellar dust, contributes 91% of the total flux and has a 1/e diameter of 0.90 minutes. The tapered shape of this component is consistent with a l/r squared dust density dependence. The compact component is unresolved (less than 0.2 minutes in diameter) and represents emission from the central star seen through the circumstellar envelope

    Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Get PDF
    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

    Ordering our world: the quest for traces of temporal organization in autobiographical memory

    No full text
    An experiment examined the idea, derived from the Self Memory System model (Conway & Pleydell-Pearce, 2000), that autobiographical events are sometimes tagged in memory with labels reflecting the life era in which an event occurred. The presence of such labels should affect the ease of judgments of the order in which life events occurred. Accordingly, 39 participants judged the order of two autobiographical events. Latency data consistently showed that between-era judgments were faster than within-era judgments, when the eras were defined in terms of either: (a) college versus high school, (b) academic quarter within year, or (c) academic year within school. The accuracy data similarly supported the presence of a between-era judgment effect for the college versus high school dichotomy

    Sodium Transport in Capillaries Isolated from Rat Brain

    Full text link
    Brain capillary endothelial cells form a bloodbrain barrier (BBB) that appears to play a role in fluid and ion homeostasis in brain. One important transport system that may be involved in this regulatory function is the Na + ,K + -ATPase that was previously demonstrated to be present in isolated brain capillaries. The goal of the present study was to identify additional Na + transport systems in brain capillaries that might contribute to BBB function. Microvessels were isolated from rat brains and 22 Na + uptake by and efflux from the cells were studied. Total 22 Na + uptake was increased and the rate of 22 Na + efflux was decreased by ouabain, confirming the presence of Na + ,K + -ATPase in capillary cells. After inhibition of Na + ,K + -ATPase activity, another saturable Na + transport mechanism became apparent. Capillary uptake of 22 Na + was stimulated by an elevated concentration of Na + or H + inside the cells and inhibited by extracellular Na + , H + , Li + , and NH 4 + . Amiloride inhibited 22 Na + uptake with a K i between 10 −5 and 10 −6 M but there was no effect of 1 mM furosemide on 22 Na + uptake by the isolated microvessels. These results indicate the presence in brain capillaries of a transport system capable of mediating Na + / Na + and Na + /H + exchange. As a similar transport system does not appear to be present on the luminal membrane of the brain capillary endothelial cell, it is proposed that Na + /H + exchange occurs primarily across the antiluminal membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66187/1/j.1471-4159.1983.tb09065.x.pd

    Heterodyne Spectroscopy of the 63 μ\mum O I Line in M42

    Full text link
    We have used a laser heterodyne spectrometer to resolve the emission line profile of the 63 micron 3P1 - 3P2 fine-structure transition of O I at two locations in M42. Comparison of the peak antenna temperature with that of the 158 micron C II fine-structure line shows that the gas kinetic temperature in the photodissociation region near theta1C is 175 - 220 K, the density is greater than 2x10 ^5 cm-3, and the hydrogen column density is about 1.5x10 ^22 cm-2. A somewhat lower temperature and column density are found in the IRc2 region, most likely reflecting the smaller UV flux. The observed width of the O I line is 6.8 km/s (FWHM) at theta1C, which is slightly broadened over the intrinsic linewidth by optical depth effects. No significant other differences between the O I and C II line profiles are seen, which shows that the narrow emission from both neutral atomic oxygen and ionized carbon comes from the PDR. The O I data do not rule out the possibility of weak broad-velocity emission from shock-excited gas at IRc2, but the C II data show no such effect, as expected from non-ionizing shock models.Comment: 11 pages including 2 postscript figures, uses aaspp4.st

    Universal Flow-Driven Conical Emission in Ultrarelativistic Heavy-Ion Collisions

    Full text link
    The double-peak structure observed in soft-hard hadron correlations is commonly interpreted as a signature for a Mach cone generated by a supersonic jet interacting with the hot and dense medium created in ultrarelativistic heavy-ion collisions. We show that it can also arise due to averaging over many jet events in a transversally expanding background. We find that the jet-induced away-side yield does not depend on the details of the energy-momentum deposition in the plasma, the jet velocity, or the system size. Our claim can be experimentally tested by comparing soft-hard correlations induced by heavy-flavor jets with those generated by light-flavor jets.Comment: 4 pages, 3 figure

    Charge dynamics and spin blockade in a hybrid double quantum dot in silicon

    Get PDF
    Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer due to the semiconductor vacuum character of silicon and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability and scalability. Here we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterise the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time T1 of 100 ns. Additionally, we demonstrate spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.Comment: 6 pages, 4 figures, supplementary information (3 pages, 4 figures

    Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Full text link
    We present a novel reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consist of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture

    Central limit theorem for multiplicative class functions on the symmetric group

    Full text link
    Hambly, Keevash, O'Connell and Stark have proven a central limit theorem for the characteristic polynomial of a permutation matrix with respect to the uniform measure on the symmetric group. We generalize this result in several ways. We prove here a central limit theorem for multiplicative class functions on symmetric group with respect to the Ewens measure and compute the covariance of the real and the imaginary part in the limit. We also estimate the rate of convergence with the Wasserstein distance.Comment: 23 pages; the mathematics is the same as in the previous version, but there are several improvments in the presentation, including a more intuitve name for the considered function
    corecore