8,158 research outputs found

    Analytical sun synchronous low-thrust manoeuvres

    Get PDF
    Article describes analytical sun synchronous low-thrust manoeuvres

    Persistent superfluid phase in a three-dimensional quantum XY model with ring exchange

    Full text link
    We present quantum Monte Carlo simulation results on a quantum S=1/2 XY model with ring exchange (the J-K model) on a three-dimensional simple cubic lattice. We first characterize the ground state properties of the pure XY model, obtaining estimations for the energy, spin stiffness and spin susceptibility at T=0 in the superfluid phase. With the ring exchange, we then present simulation data on small lattices which suggests that the superfluid phase persists to very large values of the ring exchange K, without signatures of a phase transition. We comment on the consequences of this result for the search for various exotic phases in three dimensions.Comment: 4 pages, 4 figure

    Nonlocal effects on magnetism in the diluted magnetic semiconductor Ga_{1-x}Mn_{x}As

    Get PDF
    The magnetic properties of the diluted magnetic semiconductor Ga_{1-x}Mn_{x}As are studied within the dynamical cluster approximation. We use the k-dot-p Hamiltonian to describe the electronic structure of GaAs with spin-orbit coupling and strain effects. We show that nonlocal effects are essential for explaining the experimentally observed transition temperature and saturation magnetization. We also demonstrate that the cluster anisotropy is very strong and induces rotational frustration and a cube-edge direction magnetic anisotropy at low temperature. With this, we explain the temperature-driven spin reorientation in this system.Comment: 4 pages, 4 figures; to be published in Phys. Rev. Let

    The spin-half Heisenberg antiferromagnet on two Archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond

    Full text link
    We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean lattices, namely, the maple-leaf and bounce lattices as well as a generalized JJ-J′J' model interpolating between both systems by varying J′/JJ'/J from J′/J=0J'/J=0 (bounce limit) to J′/J=1J'/J=1 (maple-leaf limit) and beyond. We use the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our results indicate that the "pure" bounce (J′/J=0J'/J=0) and maple-leaf (J′/J=1J'/J=1) Heisenberg antiferromagnets are magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum fluctuations. We found that magnetic long-range order is present in a wide parameter range 0≤J′/J≲Jc′/J0 \le J'/J \lesssim J'_c/J and that the magnetic order parameter varies only weakly with J′/JJ'/J. At Jc′≈1.45JJ'_c \approx 1.45 J a direct first-order transition to a quantum orthogonal-dimer singlet ground state without magnetic long-range order takes place. The orthogonal-dimer state is the exact ground state in this large-J′J' regime, and so our model has similarities to the Shastry-Sutherland model. Finally, we use the exact diagonalization to investigate the magnetization curve. We a find a 1/3 magnetization plateau for J′/J≳1.07J'/J \gtrsim 1.07 and another one at 2/3 of saturation emerging only at large J′/J≳3J'/J \gtrsim 3.Comment: 9 pages, 10 figure

    Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    High magnetic fields have revealed a surprisingly small Fermi-surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of this state and its relationship to the principal pseudogap and superconducting phases. We employ pulsed magnetic field measurements on the cuprate HgBa2_2CuO4+δ_{4+\delta} to identify signatures of Fermi surface reconstruction from a sign change of the Hall effect and a peak in the temperature-dependent planar resistivity. We trace the termination of Fermi-surface reconstruction to two hole concentrations where the superconducting upper critical fields are found to be enhanced. One of these points is associated with the pseudogap end-point near optimal doping. These results connect the Fermi-surface reconstruction to both superconductivity and the pseudogap phenomena.Comment: 5 pages. 3 Figures. PNAS (2020

    Optimal control technique for Many Body Quantum Systems dynamics

    Full text link
    We present an efficient strategy for controlling a vast range of non-integrable quantum many body one-dimensional systems that can be merged with state-of-the-art tensor network simulation methods like the density Matrix Renormalization Group. To demonstrate its potential, we employ it to solve a major issue in current optical-lattice physics with ultra-cold atoms: we show how to reduce by about two orders of magnitudes the time needed to bring a superfluid gas into a Mott insulator state, while suppressing defects by more than one order of magnitude as compared to current experiments [1]. Finally, we show that the optimal pulse is robust against atom number fluctuations.Comment: 5 pages, 4 figures, published versio

    Lattice Kinetics of Diffusion-Limited Coalescence and Annihilation with Sources

    Full text link
    We study the 1D kinetics of diffusion-limited coalescence and annihilation with back reactions and different kinds of particle input. By considering the changes in occupation and parity of a given interval, we derive sets of hierarchical equations from which exact expressions for the lattice coverage and the particle concentration can be obtained. We compare the mean-field approximation and the continuum approximation to the exact solutions and we discuss their regime of validity.Comment: 24 pages and 3 eps figures, Revtex, accepted for publication in J. Phys.
    • …
    corecore