194 research outputs found

    Driven low density granular mixtures

    Full text link
    We study the steady state properties of a 2D granular mixture in the presence of energy driving by employing simple analytical estimates and Direct Simulation Monte Carlo. We adopt two different driving mechanisms: a) a homogeneous heat bath with friction and b) a vibrating boundary (thermal or harmonic) in the presence of gravity. The main findings are: the appearance of two different granular temperatures, one for each species; the existence of overpopulated tails in the velocity distribution functions and of non trivial spatial correlations indicating the spontaneous formation of cluster aggregates. In the case of a fluid subject to gravity and to a vibrating boundary, both densities and temperatures display non uniform profiles along the direction normal to the wall, in particular the temperature profiles are different for the two species while the temperature ratio is almost constant with the height. Finally, we obtained the velocity distributions at different heights and verified the non gaussianity of the resulting distributions.Comment: 19 pages, 12 figures, submitted for publicatio

    Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach

    Full text link
    The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular we considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927.. and d_H=log 12/log 4 = 1.7924.., respectively. The data show in a clear way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with a finite size scaling analysis, we were able to determine numerically the critical exponents in each case and to provide an estimate of their errors. Finally we considered the hyperscaling relation and found indications that it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a second fractal; there are other minor change

    A Soluble Phase Field Model

    Get PDF
    The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized Phase Field model, which describes the dynamics of an ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to a conserved field (e.g. thermal field). After obtaining the rules governing the evolution process, by means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full solutions of the exact self-consistent equations for the model are also obtained and compared with computer simulation results. In addition, in order to check the validity of the present model we confronted its predictions against those of the standard Phase field model and found reasonable agreement. Interestingly, we find that the system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e. on the initial condition. Such a phase is characterized by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure

    Phase separation in systems with absorbing states

    Full text link
    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invariance. Some applications are also discussed.Comment: Submitted to Europhysics Let

    Dynamics of vibrofluidized granular gases in periodic structures

    Full text link
    The behavior of a driven granular gas in a container consisting of MM connected compartments is studied employing a microscopic kinetic model. After obtaining the governing equations for the occupation numbers and the granular temperatures of each compartment we consider the various dynamical regimes. The system displays interesting analogies with the ordering processes of phase separating mixtures quenched below the their critical point. In particular, we show that below a certain value of the driving intensity the populations of the various compartments become unequal and the system clusterizes. Such a phenomenon is not instantaneous, but is characterized by a time scale, τ\tau, which follows a Vogel-Vulcher exponential behavior. On the other hand, the reverse phenomenon which involves the ``evaporation'' of a cluster due to the driving force is also characterized by a second time scale which diverges at the limit of stability of the cluster.Comment: 11 pages, 17 figure

    Multiple time-scale approach for a system of Brownian particles in a non-uniform temperature field

    Get PDF
    The Smoluchowsky equation for a system of interacting Brownian particles in a temperature gradient is derived from the Kramers equation by means of a multiple time-scale method. The interparticle interactions are assumed to be represented by a mean-field description. We present numerical results that compare well with the theoretical prediction together with an extensive discussion on the prescription of the Langevin equation in overdamped systems.Comment: 8 pages, 2 figure

    Dynamics of Fluid Mixtures in Nanospaces

    Full text link
    A multicomponent extension of our recent theory of simple fluids [ U.M.B. Marconi and S. Melchionna, Journal of Chemical Physics, 131, 014105 (2009) ] is proposed to describe miscible and immiscible liquid mixtures under inhomogeneous, non steady conditions typical of confined fluid flows. We first derive from a microscopic level the evolution equations of the phase space distribution function of each component in terms of a set of self consistent fields, representing both body forces and viscous forces (forces dependent on the density distributions in the fluid and on the velocity distributions). Secondly, we solve numerically the resulting governing equations by means of the Lattice Boltzmann method whose implementation contains novel features with respect to existing approaches. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations. We validate our model by studying the bulk viscosity dependence of the mixture on concentration, packing fraction and size ratio. Finally we consider inhomogeneous systems and study the dynamics of mixtures in slits of molecular thickness and relate structural and flow properties.Comment: 16 pages, 8 figure

    A simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions

    Full text link
    Monte Carlo simulations of a spherical macroion, surrounded by a size-asymmetric electrolyte in the primitive model, were performed. We considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice the size of counterions), for several surface charge densities of the macrosphere. The radial distribution functions, electrostatic potential at the Helmholtz surfaces, and integrated charge are reported. We compare these simulational data with original results obtained from the Ornstein-Zernike integral equation, supplemented by the hypernetted chain/hypernetted chain (HNC/HNC) and hypernetted chain/mean spherical approximation (HNC/MSA) closures, and with the corresponding calculations using the modified Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC/HNC and HNC/MSA integral equations formalisms show good concordance with Monte Carlo "experiments", whereas the notable limitations of point-ion approaches are evidenced. Most importantly, the simulations confirm our previous theoretical predictions of the non-dominance of the counterions in the size-asymmetric spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the appearance of anomalous curvatures at the outer Helmholtz plane and the enhancement of charge reversal and screening at high colloidal surface charge densities due to the ionic size asymmetry.Comment: 11 pages, 7 figure
    corecore