10 research outputs found

    Quantitative RT-PCR for the three subunits of the high affinity IgE-receptor was performed on intestinal biopsies from pediatric patients.

    No full text
    <p>(A) FcεRIα mRNA transcripts were found in all esophageal biopsies and with varying frequency in more distal biopsies (left panel). Similarly, the highest frequency of FcεRIβ mRNA-positive specimens was found in the esophagus (middle panel). The common Fc-γ chain was detected in the majority of specimens from the entire GI tract (right panel). Black stacked-bars represent target-positive specimens, and white stacked-bars represent target-negative specimens. (B) The highest levels of FcεRIα mRNA transcripts were found in the esophageal mucosa (left panel), while FcεRIβ mRNA expression peaked in the gastric mucosa (middle panel). Esophageal specimens revealed the lowest FcεRIγ mRNA expression compared to the stomach, terminal ileum, colon, and rectum (right panel). * p<0.05, Mann-Whitney-U test.</p

    Immunohistochemistry with FcεRIα specific antibody (mAb 15-1) on snap-frozen intestinal specimens from (A) the esophagus, (B) the stomach, (C) the duodenum, and (D) the colon.

    No full text
    <p>FcεRIα-positive cells (red) are frequently found in the esophagus, the stomach, and the duodenum (black arrows). (E) shows isotype control with mouse IgG1. Goblet cells in the duodenum and the colon revealed non-specific binding of antibodies. Original magnification x20. Bottom row (F-J) shows details from A-E. Representative specimens from n = 10.</p

    FcεRI mRNA expression levels in the upper gastrointestinal tract under inflammatory conditions.

    No full text
    <p>(A) FcεRIα-, (B) FcεRIβ-, and (C) FcεRIγ-mRNA expression levels in specimens from children with gastritis/esophagitis (open squares), celiac disease (open triangles), inflammatory bowel disease (IBD) (open diamonds), and normal mucosa (open circles). * p<0.05, Kruskal-Wallis test.</p

    c-kit positive mast cells in the esophagus epithelium express FcεRIα.

    No full text
    <p>(A) FcεRIα is visualized with mAb Cra1 (green, first panel). Mast cells are shown with c-kit as a marker (red, second panel). Cell nuclei are visualized with DAPI staining (blue). (B) shows higher magnifications from (A). FcεRIα is expressed on esophageal mast cells (B, white arrows). Representative specimens from n = 3.</p

    Nature Communications / Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis

    No full text
    Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11CTLA-4 vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.(VLID)492061
    corecore