7,705 research outputs found
Hypervelocity impact facility for simulating materials exposure to impact by space debris
As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry
HgSe, a highly electronegative stable metallic contact for semiconductor devices
Schottky barriers formed by the highly electronegative substance HgSe on n-ZnS and on n-ZnSe have been characterized by capacitance-voltage and photoresponse measurements. The barriers are about 0.5 eV greater than Au barriers on these n-type substrates. HgSe contacts are stable under ambient conditions and are easily fabricated, making them attractive for device use
Perception of nonnative tonal contrasts by Mandarin-English and English-Mandarin sequential bilinguals
This study examined the role of acquisition order and crosslinguistic similarity in influencing transfer at the initial stage of perceptually acquiring a tonal third language (L3). Perception of tones in Yoruba and Thai was tested in adult sequential bilinguals representing three different first (L1) and second language (L2) backgrounds: L1 Mandarin-L2 English (MEBs), L1 English-L2 Mandarin (EMBs), and L1 English-L2 intonational/non-tonal (EIBs). MEBs outperformed EMBs and EIBs in discriminating L3 tonal contrasts in both languages, while EMBs showed a small advantage over EIBs on Yoruba. All groups showed better overall discrimination in Thai than Yoruba, but group differences were more robust in Yoruba. MEBs’ and EMBs’ poor discrimination of certain L3 contrasts was further reflected in the L3 tones being perceived as similar to the same Mandarin tone; however, EIBs, with no knowledge of Mandarin, showed many of the same similarity judgments. These findings thus suggest that L1 tonal experience has a particularly facilitative effect in L3 tone perception, but there is also a facilitative effect of L2 tonal experience. Further, crosslinguistic perceptual similarity between L1/L2 and L3 tones, as well as acoustic similarity between different L3 tones, play a significant role at this early stage of L3 tone acquisition.Published versio
Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding
The polymerase chain reaction (PCR) is one of the most widely used techniques in molecular biology. In combination with High Throughput Sequencing (HTS), PCR is widely used to quantify transcript abundance for RNA-seq, and in the context of analysis of T and B cell receptor repertoires. In this study, we combine DNA barcoding with HTS to quantify PCR output from individual target molecules. We develop computational tools that simulate both the PCR branching process itself, and the subsequent subsampling which typically occurs during HTS sequencing. We explore the influence of different types of heterogeneity on sequencing output, and compare them to experimental results where the efficiency of amplification is measured by barcodes uniquely identifying each molecule of starting template. Our results demonstrate that the PCR process introduces substantial amplification heterogeneity, independent of primer sequence and bulk experimental conditions. This heterogeneity can be attributed both to inherited differences between different template DNA molecules, and the inherent stochasticity of the PCR process. The results demonstrate that PCR heterogeneity arises even when reaction and substrate conditions are kept as constant as possible, and therefore single molecule barcoding is essential in order to derive reproducible quantitative results from any protocol combining PCR with HTS
Recommended from our members
Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow
We performed large-eddy simulations of the flow over a typical two-dimensional dune geometry at laboratory scale (the Reynolds number based on the average channel height andmean velocity is 18,900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The results are validated by comparison with simulations and experiments in the literature. The flowseparates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, and the generation of coherent structures. The turbulent kinetic energy budgets show the importance of the turbulent transport and mean-flow advection in the bulk flow above the shear layer. In the recirculation zone and in the attached boundary layers production and dissipation are the most important terms. Large, coherent structures of various types can be observed. Spanwise vortices are generated in the separated shear layer due to the Kelvin-Helmholtz instability; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures, are tilted downward, and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils." Near-wall turbulence, after the reattachment point, is affected by large streamwise Taylor-Görtler vortices generated on the concave part of the stoss side, which affect the distribution of the near-wall streaks
Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice
Strong correlations can dramatically modify the thermodynamics of a quantum
many-particle system. Especially intriguing behaviour can appear when the
system adiabatically enters a strongly correlated regime, for the interplay
between entropy and strong interactions can lead to counterintuitive effects. A
well known example is the so-called Pomeranchuk effect, occurring when liquid
3He is adiabatically compressed towards its crystalline phase. Here, we report
on a novel anomalous, isentropic effect in a spin mixture of attractively
interacting fermionic atoms in an optical lattice. As we adiabatically increase
the attraction between the atoms we observe that the gas, instead of
contracting, anomalously expands. This expansion results from the combination
of two effects induced by pair formation in a lattice potential: the
suppression of quantum fluctuations as the attraction increases, which leads to
a dominant role of entropy, and the progressive loss of the spin degree of
freedom, which forces the gas to excite additional orbital degrees of freedom
and expand to outer regions of the trap in order to maintain the entropy. The
unexpected thermodynamics we observe reveal fundamentally distinctive features
of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure
Neurologic effects of exogenous saccharides: A review of controlled human, animal, and in vitro studies
Objectives: Current research efforts are centered on delineating the novel health benefits of naturally derived saccharides, including growing interest in their abilities to influence neurologic health. We performed a comprehensive review of the literature to consolidate all controlled studies assessing various roles of exogenous saccharide compounds and polysaccharide-rich extracts from plants, fungi, and other natural sources on brain function, with a significant focus on benefits derived from oral intake. Methods: Studies were identified by conducting electronic searches on PubMed and Google Scholar. Reference lists of articles were also reviewed for additional relevant studies. Only articles published in English were included in this review. Results: Six randomized, double-blind, placebo-controlled clinical studies were identified in which consumption of a blend of plant-derived polysaccharides showed positive effects on cognitive function and mood in healthy adults. A separate controlled clinical study observed improvements in well-being with ingestion of a yeast beta-glucan. Numerous animal and in vitro studies have demonstrated the ability of individual saccharide compounds and polysaccharide-rich extracts to modify behavior, enhance synaptic plasticity, and provide neuroprotective effects. Discussion: Although the mechanisms by which exogenous saccharides can influence brain function are not well understood at this time, the literature suggests that certain naturally occurring compounds and polysaccharide-rich extracts show promise, when taken orally, in supporting neurologic health and function. Additional well-controlled clinical studies on larger populations are necessary, however, before specific recommendations can be made
Let’s celebrate recovery. Inclusive Cities working together to support social cohesion
Recovery from illicit drug and alcohol use takes place over time and is characterised by a dynamic interaction between internal and external components. An integral part of all recovery journeys is effective community reintegration. After all, recovery is not mainly an issue of personal motivation rather it is about acceptance by family, by friends and by a range of organisations and professionals across the community. Therefore to support pathways to recovery, structural and contextual endeavours are needed to supplement individually-oriented interventions and programmes. One way to do this, is by introducing Inclusive Cities. An Inclusive City promotes participation, inclusion, full and equal citizenship to all her citizens, including those in recovery, based on the idea of community capital. The aim of building recovery capital at a community level through connections and 'linking social capital' to challenge stigmatisation and exclusion, is seen as central to this idea. Inclusive Cities is an initiative to support the creation of Recovery-Oriented Systems of Care at a city level, that starts with but extends beyond substance using populations. This paper describes (and gives examples of) how it is possible to use recovery as a starting point for generating social inclusion, challenging the marginalisation of other excluded populations as well by building community connections
- …