19 research outputs found

    Influence of transformation plasticity on residual stresses and distortions due to the heat treatment of steels with different carbon contents

    No full text
    The simulation of manufacturing processes is more and more becoming an important tool in simultaneous engineering. The aim is to cut the time necessary for development and to optimise processes by simulation of the complete manufacturing chain. The field of heat treatment offers a large variety of applications for the use of simulation tools. Heat treatment of steels always includes the development of residual stresses and distortions. The geometry of the part, the composition of the material, the heat treatment process as well as the initial state of the part interact with each other in complex ways and have an influence on the distortion of the part. Using simulation the temporal development of temperature, phases, stresses and distortions while quenching as well as the residual stress distribution and distortion after quenching can be calculated. Transformation plasticity has been proved to be very important for heat treatment simulation. Three steels with identical contents of alloying elements but different carbon contents of 0.2, 0.5 and 0.8 wt.-% were analysed. The transformation plasticity constants for the martensitic transformation under tensile as well as compressive stresses were determined by quenching hollow specimen with nitrogen. Distortions and residual stresses were examined experimentally with cylinders made out of the three steels. Additionally, simulations of the quenching process of the cylinders were taken into account in the analysis of the experimental findings

    Exploring differences in dogs’ and wolves’ preference for risk in a foraging task

    No full text
    Both human and non-humans species face decisions in their daily lives which may entail taking risks. At the individual level, a propensity for risk-taking has been shown to be positively correlated with explorative tendencies, whereas at the species level a more variable and less stable feeding ecology has been associated with a greater preference for risky choices. In the current study we compared two closely related species; wolves and dogs, which differ significantly in their feeding ecology and their explorative tendencies. Wolves depend on hunting for survival with a success rate of between 15 and 50%, whereas free-ranging dogs (which make up 80% of the world dog population), are largely scavengers specialized on human produce i.e. a more geographically and temporally stable resource. Here, we used a foraging paradigm, which allowed subjects to choose between a guaranteed less preferred food vs. a more preferred food, which was however delivered only 50% of the time (a stone being delivered the rest of time). We compared identically raised adult wolves and dogs and found that in line with the differing feeding ecologies of the two species and their explorative tendencies, wolves showed a higher preference for risk-taking than dogs
    corecore