525 research outputs found

    Cell genesis and dendritic plasticity: a neuroplastic pas de deux in the onset and remission from depression

    Get PDF
    Brain neuroplasticity is increasingly considered to be an important component of both the pathology and treatment of depressive spectrum disorders. Recent studies shed light on the relevance of hippocampal cell genesis and cortico-limbic dendritic plasticity for the development and remission from depressive-like behavior. However, the neurobiological significance of neuroplastic phenomena in this context is still controversial. Here we summarize recent developments in this topic and propose an integrative interpretation of data gathered so far

    PhenoWorld : a new paradigm to screen rodent behavior

    Get PDF
    Modeling depression in animals has inherent complexities that are augmented by intrinsic difficulties to measure the characteristic features of the disorder. Herein, we describe the PhenoWorld (PhW), a new setting in which groups of six rats lived in an ethological enriched environment, and have their feeding, locomotor activity, sleeping and social behavior automatically monitored. A battery of emotional and cognitive tests was used to characterize the behavioral phenotype of animals living in the PhW and in standard conditions (in groups of six and two rats), after exposure to an unpredictable chronic mild stress paradigm (uCMS) and antidepressants. Data reveal that animals living in the PhW displayed similar, but more striking, behavioral differences when exposed to uCMS, such as increased behavioral despair shown in the forced swimming test, resting/sleep behavior disturbances and reduced social interactions. Moreover, several PhW-cage behaviors, such as spontaneous will to go for food or exercise in running wheels, proved to be sensitive indicators of depressive-like behavior. In summary, this new ethological enriched paradigm adds significant discriminative power to screen depressive-like behavior, in particularly rodent's hedonic behavior

    Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy

    Get PDF
    Monoclonal antibodies are widely used to treat non-infectious conditions but are costly. Vaccines could offer a cost-effective alternative but have been limited by sub-optimal T-cell stimulation and/or weak vaccine responses in recipients, for example, in elderly patients. We have previously shown that the repetitive structure of virus-like-particles (VLPs) can effectively bypass self-tolerance in therapeutic vaccines. Their efficacy could be increased even further by the incorporation of an epitope stimulating T cell help. However, the self-assembly and stability of VLPs from envelope monomer proteins is sensitive to geometry, rendering the incorporation of foreign epitopes difficult. We here show that it is possible to engineer VLPs derived from a non human-pathogenic plant virus to incorporate a powerful T-cell-stimulatory epitope derived from Tetanus toxoid. These VLPs (termed CMVTT) retain self-assembly as well as long-term stability. Since Th cell memory to Tetanus is near universal in humans, CMVTT-based vaccines can deliver robust antibody-responses even under limiting conditions. By way of proof of concept, we tested a range of such vaccines against chronic inflammatory conditions (model: psoriasis, antigen: interleukin-17), neurodegenerative (Alzheimer’s, β-amyloid), and allergic disease (cat allergy, Fel-d1), respectively. Vaccine responses were uniformly strong, selective, efficient in vivo, observed even in old mice, and employing low vaccine doses. In addition, randomly ascertained human blood cells were reactive to CMVTT-VLPs, confirming recognition of the incorporated Tetanus epitope. The CMVTT-VLP platform is adaptable to almost any antigen and its features and performance are ideally suited for the design of vaccines delivering enhanced responsiveness in aging populations

    Longitudinal MRI follow-up of rheumatoid arthritis in the temporomandibular joint: importance of synovial proliferation as an early-stage sign

    Get PDF
    This article describes longitudinal magnetic resonance imaging (MRI) observations in a patient with rheumatoid arthritis of the temporomandibular joint. The characteristic findings included marked synovial proliferation, which was observed before the onset of severe bone destruction. MRI is considered to provide valuable information for the early detection of rheumatoid arthritis of the temporomandibular joint

    TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    Get PDF
    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas

    Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil

    Get PDF
    Articles in International JournalsLipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/ acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n26 and 18:3n23. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n23

    Magnetic properties of amorphous Co0.74Si0.26/Si multilayers with different numbers of periods

    Get PDF
    Two sets of [Co0.74Si0.26(5nm)∕Si(s)]n amorphous films were prepared by magnetron sputtering: one in the form of multilayers with the Si spacer thickness s fixed at 3nm, and the number n of periods varying from 1 to 10 and the other with only two periods and s varying from 3to24nm (trilayers). In both sets, the Co0.74Si0.26 layer thickness t was fixed at 5nm. All the samples except the one with s=24nm manifest antiferromagnetic coupling. Their magnetic properties at room temperature were probed using the magnetooptical transverse Kerr effect (MOTKE) and ferromagnetic resonance (FMR). The relative increase in the saturation magnetization Ms (for trilayers, relative to a structure with s=24nm; for multilayers, relative to the single-layer structure) determined from the FMR measurements was compared with the exchange coupling strength HAFJ obtained from the MOTKE studies. The dependences of HAFJ and Ms on n and s were found to be very similar to each other. Possible mechanisms of this similarity are discussed.This work was supported by MICINN of Spain (grants Nos. HP2008-0032, NAN2004-09087 and FIS2008-06249) and CRUP of Portugal (grant No. E41/09) in the framework of the Spanish-Portuguese Integrated Action. G.N.K acknowledges support from FCT of Portugal through the “Ciencia 2007” program. C.Q. acknowledges support from the Spanish Government and European Social Fund under the “Ramón y Cajal” program.Peer reviewe

    Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus

    Get PDF
    Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.Patricia Patricio, Antonio Mateus-Pinheiro, Monica Morais, and Nuno Dinis Alves received fellowships from the Portuguese Foundation for Science and Technology (FCT). Michal Korostynski and Marcin Piechota were funded by the POIG De-Me-Ter 3.1 and NCN 2011/03/D/NZ3/01686 grants. This study was co-funded by the Life and Health Sciences Research Institute (ICVS) and ON. 2-O NOVO NORTE-North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/ 2013, through the European Regional Development Fund (ERDF) and by the SwitchBox Consortium (Contract FP7-Health-F2-2010-259772 from the European Union). The authors declare no conflict of interest
    corecore