551 research outputs found
Vitamin E in Viral Inactivated Vaccines
Abstract This research aimed at verifying whether vitamin E added to inactivated and emulsified vaccines enhances the immune response to viral antigens in chicken. Three hundred and twenty broilers (males and females) and 16 types of vaccines, varying in viral antigen [Newcastle disease virus, egg drop syndrome 1976 virus (EDS76V), and infectious bursal disease virus] and vitamin E amount (replacing 10, 20, and 30% of mineral oil) were used. Results show that vaccines with vitamin E, especially when it replaces 20 or 30% of mineral oil, induces a more rapid and higher antibody response than control vaccines. An adjuvant effect of vitamin E was also present in viral vaccine lacking bacterial antigens. Apart from vitamin E content, the Newcastle disease virus and infectious bursal disease virus monovalent vaccines induced higher titers of specific circulating antibodies in birds than did trivalent vaccines
Vitamin E as Adjuvant in Emulsified Vaccine for Chicks
Abstract Mineral oil was partially replaced with D, L-α-tocopheryl acetate (vitamin E) in bacterial and viral inactivated emulsified vaccines. Vitamin E increased the immune response to the viral antigen (Newcastle disease virus) used but not to the bacterial antigen (Escherichia coli) when its presence in the oil phase did not exceed 30%. Inoculated vitamin E may have enhanced the immune response by interacting with the immune-competent cells involved in the inflammatory reaction that followed inoculation of emulsified vaccines
Electrochemical C(sp3)-H functionalization of ethers via hydrogen-atom transfer by means of cathodic reduction
: The chemo- and stereoselective electrochemical allylation/alkylation of ethers is presented via a C(sp3)-H activation event. The electrosynthetic protocol enables the realization of a large library of functionalized ethers (35 examples) in high yields (up to 84%) via cathodic activation of a new type of redox-active carbonate (RAC), capable of triggering HAT (Hydrogen-Atom-Transfer) events through the generation of electrophilic oxy radicals. The process displayed high functional group tolerance and mild reaction conditions. A mechanistic elucidation via voltammetric analysis completes the study
Mechanotransduction in human and mouse beta cell lines: reliable models to characterize novel signaling pathways controlling beta cell fate
Background and aims: Attempts to influence \u3b2-cell differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/transduction complexity remain elusive. We recently demonstrated that human islets of Langerhans sense the ECM nanotopography
and activate a mechanotransductive pathway, which is essential for preserving long-term \u3b2-cell differentiation and function in vitro. However, human islets of Langerhans are extremely heterogeneous and their availability for research purpose is limited. Therefore, aim of the proposed research was to investigate whether mouse and human \u3b2-cell lines might sense changes innthe ECM topography and might be used as a simplified model to dissect the molecular pathways involved in mechanotransduction.
Materials and methods: We used supersonic cluster beam deposition to fabricate nanostructured substrates characterized by a quantitatively controllable ECM-like nanoroughness. Mouse \u3b2TC3 and human 1.1B4 cells were seeded on these substrates and after five days in culture, the activation of the mechanotransductive pathway was verified by means of morphological (super-resolution fluorescence microscopy), functional and proteomic techniques.
Results: Quantitative immunofluorescence studies demonstrated that the cell-nanotopography interaction affects the focal adhesion structures (smaller vinculin clusters), the organization of the actin cytoskeleton (shorter actin fiber) and the nuclear architecture. Functional studies revealed that nanostructured surfaces improve the \u3b2-cell mitochondrial activity and increase the glucose-stimulated Ca2+currents and insulin release. Label-free shotgun proteomics broadly confirmed the morphological and functional studies and showed the upregulation of a number of mechanosensors and transcription factors involved in \u3b2-cell differentiation in cells grown on nanostructured substrates compared to those grown on flat standard control surfaces.
Conclusion: Our data reveal that mouse and human \u3b2-cell lines sense changes in extracellular mechanical forces and activate a mechanotransductive pathway. The findings from this study will be useful to clarify the link between mechanotransduction and cell fate and to successfully engineer scaffolds in order to have functional beta cells
Merging C-C σ-bond activation of cyclobutanones with CO2 fixation via Ni-catalysis
A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation
EFFECTS OF EXTERNAL LOADING ON POWER OUTPUT DURING VERTICAL JUMP: A PILOT STUDY WITH WATER POLO GOAL KEEPERS.
The purpose of this study was to describe preliminary results of the effects of external loading on power output during vertical jumps performed on a force platform by three elite
water polo goal keepers (1 female and 2 male). Peak power output was calculated from time-force curves during vertical jumps with and without external additional loads
corresponding to 0%, 5%, 10% and 15 % of their body weight. The jumps were performed from a squat position, without lower limb counter-movement or arm swings.
The peak instantaneous power was reached at 0% additional load (body weight) by two of the athletes, and for the third, the peak instantaneous power was reached at 5% additional load. This study suggests that for water polo goal keepers, the load that generates maximum power output in dry land exercises is body weight, without any additional load
Visible-Light Assisted Covalent Surface Functionalization of Reduced Graphene Oxide Nanosheets with Arylazo Sulfones
We present an environmentally benign methodology for the covalent functionalization (arylation) of reduced graphene oxide (rGO) nanosheets with arylazo sulfones. A variety of tagged aryl units were conveniently accommodated at the rGO surface via visible-light irradiation of suspensions of carbon nanostructured materials in aqueous media. Mild reaction conditions, absence of photosensitizers, functional group tolerance and high atomic fractions (XPS analysis) represent some of the salient features characterizing the present methodology. Control experiments for the mechanistic elucidation (Raman analysis) and chemical nanomanipulation of the tagged rGO surfaces are also reported
Reduction of Mycotoxigenic Fungi Growth and Their Mycotoxin Production by Bacillus subtilis QST 713
The use of chemical pesticides to control the occurrence of mycotoxigenic fungi in crops has led to environmental and human health issues, driving the agriculture sector to a more sustainable system. Biocontrol agents such as Bacillus strains and their antimicrobial metabolites have been proposed as alternatives to chemical pesticides. In the present work, a broth obtained from a commercial product containing Bacillus subtilis QST 713 was tested for its ability to inhibit the growth of mycotoxigenic fungi as well as reduce their mycotoxin production. Mass spectrometry analysis of Bacillus subtilis broth allowed to detect the presence of 14 different lipopeptides, belonging to the iturin, fengycin, and surfactin families, already known for their antifungal properties. Bacillus subtilis broth demonstrated to be a useful tool to inhibit the growth of some of the most important mycotoxigenic fungi such as Aspergillus flavus, Fusarium verticillioides, Fusarium graminearum, Aspergillus carbonarius, and Alternaria alternata. In addition, cell-free Bacillus subtilis broth provided the most promising results against the growth of Fusarium graminearum and Alternaria alternata, where the radial growth was reduced up to 86% with respect to the untreated test. With regard to the mycotoxin reduction, raw Bacillus subtilis broth completely inhibited the production of aflatoxin B1, deoxynivalenol, zearalenone, and tenuazonic acid. Cell-free broth provided promising inhibitory properties toward all of the target mycotoxins, even if the results were less promising than the corresponding raw broth. In conclusion, this work showed that a commercial Bacillus subtilis, characterized by the presence of different lipopeptides, was able to reduce the growth of the main mycotoxigenic fungi and inhibit the production of related mycotoxins
- …