1,217 research outputs found

    Filling the Void: A Low Cost, High-Yield Method to Addressing Incidental Findings in Trauma Patients

    Get PDF
    In this study we: Report the incidence of incidental findings in a suburban trauma center treating primarily blunt and elderly trauma Propose simple solutions to increase the rate of disclosure to patientshttps://jdc.jefferson.edu/patientsafetyposters/1070/thumbnail.jp

    A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression.

    Get PDF
    Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression

    A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region

    Get PDF
    The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. The integrated strengths of the p- and s-shell are compared with a Distorted Wave Impulse Approximation calculation. The s-shell strength and shape are compared with a Hartree Fock-Random Phase Approximation calculation. The DWIA calculation overestimates the cross sections for p- and s-shell proton knockout as expected, but surprisingly agrees with the extracted R_LT value for both shells. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.

    Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Full text link
    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.Comment: 9 pages, 11 figures, submitted to Nuclear Instruments and Methods in Physics Research Section

    Hadrons in the Nuclear Medium

    Get PDF
    Quantum Chromodynamics, the microscopic theory of strong interactions, has not yet been applied to the calculation of nuclear wave functions. However, it certainly provokes a number of specific questions and suggests the existence of novel phenomena in nuclear physics which are not part of the the traditional framework of the meson-nucleon description of nuclei. Many of these phenomena are related to high nuclear densities and the role of color in nucleonic interactions. Quantum fluctuations in the spatial separation between nucleons may lead to local high density configurations of cold nuclear matter in nuclei, up to four times larger than typical nuclear densities. We argue here that experiments utilizing the higher energies available upon completion of the Jefferson Laboratory energy upgrade will be able to probe the quark-gluon structure of such high density configurations and therefore elucidate the fundamental nature of nuclear matter. We review three key experimental programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic scattering from nuclei at x>1x>1, and the measurement of tagged structure functions. These interrelated programs are all aimed at the exploration of the quark structure of high density nuclear configurations. The study of the QCD dynamics of elementary hard processes is another important research direction and nuclei provide a unique avenue to explore these dynamics. We argue that the use of nuclear targets and large values of momentum transfer at would allow us to determine whether the physics of the nucleon form factors is dominated by spatially small configurations of three quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model

    Get PDF
    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases

    Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)

    Full text link
    We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared Q2Q^2 from 0.15 to 0.65 (GeV/c)2^2. Significantly improved results on the proton electric and magnetic form factors are obtained in combination with previous cross-section data on elastic electron-proton scattering in the same Q2Q^2 region.Comment: 4 pages, 2 figures, submitted to PR

    A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron

    Full text link
    Recoil proton polarization observables were measured for both the p(e\vec {\rm e},ep^\prime\vec{\rm p}\,) and d(e\vec {\rm e},ep)^\prime\vec{\rm p}\,)n reactions at two values of Q2^2 using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The hydrogen and deuterium spin-dependent observables DD_{\ell\ell} and DtD_{{\ell}t}, the induced polarization PnP_n and the form factor ratio GEp/GMpG^p_E/G^p_M were measured under identical kinematics. The deuterium and hydrogen results are in good agreement with each other and with the plane-wave impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
    corecore