2,960 research outputs found
Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation
Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration
Search for axions in streaming dark matter
A new search strategy for the detection of the elusive dark matter (DM) axion
is proposed. The idea is based on streaming DM axions, whose flux might get
temporally enormously enhanced due to gravitational lensing. This can happen if
the Sun or some planet (including the Moon) is found along the direction of a
DM stream propagating towards the Earth location. The experimental requirements
to the axion haloscope are a wide-band performance combined with a fast axion
rest mass scanning mode, which are feasible. Once both conditions have been
implemented in a haloscope, the axion search can continue parasitically almost
as before. Interestingly, some new DM axion detectors are operating wide-band
by default. In order not to miss the actually unpredictable timing of a
potential short duration signal, a network of co-ordinated axion antennae is
required, preferentially distributed world-wide. The reasoning presented here
for the axions applies to some degree also to any other DM candidates like the
WIMPs.Comment: 5 page
Comparison of anxiety-like and social behaviour in medaka and zebrafish
The medaka, Oryzias latipes, is rapidly growing in importance as a model in behavioural research. However, our knowledge of its behaviour is still incomplete. In this study, we analysed the performance of medaka in 3 tests for anxiety-like behaviour (open-field test, scototaxis test, and diving test) and in 3 sociability tests (shoaling test with live stimuli, octagonal mirror test, and a modified shoaling test with mirror stimulus). The behavioural response of medaka was qualitatively similar to that observed in other teleosts in the open-field test (thigmotaxis), and in 2 sociability tests, the shoaling test and in the octagonal mirror test (attraction towards the social stimulus). In the remaining tests, medaka did not show typical anxiety (i.e., avoidance of light environments and preference for swimming at the bottom of the aquarium) and social responses (attraction towards the social stimulus). As a reference, we compared the behaviour of the medaka to that of a teleost species with well-studied behaviour, the zebrafish, tested under the same conditions. This interspecies comparison indicates several quantitative and qualitative differences across all tests, providing further evidence that the medaka responds differently to the experimental settings compared to other fish models
Individual differences and knockout in zebrafish reveal similar cognitive effects of BDNF between teleosts and mammals
The remarkable similarities in cognitive performance between teleosts and mammals suggest that the underlying cognitive mechanisms might also be similar in these two groups. We tested this hypothesis by assessing the effects of the brain-derived neurotrophic factor (BDNF), which is critical for mammalian cognitive functioning, on fish's cognitive abilities. We found that individual differences in zebrafish's learning abilities were positively correlated with bdnf expression. Moreover, a CRISPR/Cas9 mutant zebrafish line that lacks the BDNF gene (bdnf(-/-)) showed remarkable learning deficits. Half of the mutants failed a colour discrimination task, whereas the remaining mutants learned the task slowly, taking three times longer than control bdnf(+/+) zebrafish. The mutants also took twice as long to acquire a T-maze task compared to control zebrafish and showed difficulties exerting inhibitory control. An analysis of habituation learning revealed that cognitive impairment in mutants emerges early during development, but could be rescued with a synthetic BDNF agonist. Overall, our study indicates that BDNF has a similar activational effect on cognitive performance in zebrafish and in mammals, supporting the idea that its function is conserved in vertebrates
New experimental limit on the Pauli Exclusion Principle violation by electrons
The Pauli Exclusion Principle (PEP) is one of the basic principles of modern
physics and, even if there are no compelling reasons to doubt its validity, it
is still debated today because an intuitive, elementary explanation is still
missing, and because of its unique stand among the basic symmetries of physics.
The present paper reports a new limit on the probability that PEP is violated
by electrons, in a search for a shifted K line in copper: the presence
of this line in the soft X-ray copper fluorescence would signal a transition to
a ground state already occupied by 2 electrons. The obtained value, , improves the existing limit by almost two
orders of magnitude.Comment: submitted to Phys. Lett.
VIP: An Experiment to Search for a Violation of the Pauli Exclusion Principle
The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and
its validity has never been seriously challenged. However, given its
fundamental standing, it is very important to check it as thoroughly as
possible. Here we describe the VIP (VIolation of the Pauli exclusion principle)
experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg
and G. Snow, {\it Phys. Lett. B} {\bf 238}, 438 (1990)); VIP has just completed
the installation at the Gran Sasso underground laboratory, and aims to test the
Pauli Exclusion Principle for electrons with unprecedented accuracy, down to
. We report preliminary experimental
results and briefly discuss some of the implications of a possible violation.Comment: Plenary talk presented by E. Milotti at Meson 2006, Cracow, 9-13 June
200
Tamanhos e posições de explantes e volumes de meio de cultivo na multiplicação de ipeca. (Psychotria ipecacuanha (Brot.) Stokes) in vitro.
No presente trabalho, avaliaram-se o efeito do tamanho e posição de explantes na planta de ipeca e diferentes volumes de meio de cultivo na multiplicação ?in vitro? de Psychotria ipecacuanha (Brot.) Stokes. O experimento que avaliou o efeito dos diferentes tamanhos e posições de explantes foi conduzido em tubos de ensaio de 25x150 mm, contendo 20 mL de meio de cultivo por tubo, sendo avaliados os tamanhos de 0,5; 1,0 e 1,5 cm nas posições basal, mediana e apical. No segundo experimento, utilizaram-se frascos nos quais os tratamentos consistiam nos volumes de 10, 20, 30 e 40 mL de meio de cultivo por frasco. O meio de cultivo utilizado nos dois experimentos foi o MS (MURASHIGE e SKOOG, 1962) acrescido de 1,5 mg. L-1 de BAP (6-benzilaminopurina). A posição do segmento internodal não influenciou o desenvolvimento vegetativo; os tamanhos de 1,0 e 1,5 cm apresentaram maior número de brotações que os segmentos com 0,5 cm. No experimento com diferentes volumes de meio de cultivo, observou-se que 30 e 40 mL foram significativamente melhores na indução de brotações adventícias nessa espécie
New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)
The Pauli Exclusion Principle is one of the basic principles of modern
physics and is at the very basis of our understanding of matter: thus it is
fundamental importance to test the limits of its validity. Here we present the
VIP (Violation of the Pauli Exclusion Principle) experiment, where we search
for anomalous X-rays emitted by copper atoms in a conductor: any detection of
these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is
currently taking data at the Gran Sasso underground laboratories, and its
scientific goal is to improve by at least four orders of magnitude the previous
limit on the probability of Pauli violating transitions, bringing it into the
10**-29 - 10**-30 region. First experimental results, together with future
plans, are presented.Comment: To appear in proceedings of the XLVI International Winter Meeting on
Nuclear Physics, Bormio, Italy, January 20-26, 200
Finding Nemo’s clock reveals switch from nocturnal to diurnal activity
Timing mechanisms play a key role in the biology of coral reef fish. Typically, fish larvae leave their reef after hatching, stay for a period in the open ocean before returning to the reef for settlement. During this dispersal, larvae use a time-compensated sun compass for orientation. However, the timing of settlement and how coral reef fish keep track of time via endogenous timing mechanisms is poorly understood. Here, we have studied the behavioural and genetic basis of diel rhythms in the clown anemonefish Amphiprion ocellaris. We document a behavioural shift from nocturnal larvae to diurnal adults, while juveniles show an intermediate pattern of activity which potentially indicates flexibility in the timing of settlement on a host anemone. qRTPCR analysis of six core circadian clock genes (bmal1, clocka, cry1b, per1b, per2, per3) reveals rhythmic gene expression patterns that are comparable in larvae and juveniles, and so do not reflect the corresponding activity changes. By establishing an embryonic cell line, we demonstrate that clown anemonefish possess an endogenous clock with similar properties to that of the zebrafish circadian clock. Furthermore, our study provides a first basis to study the multi-layered interaction of clocks from fish, anemones and their zooxanthellae endosymbionts
- …