14 research outputs found

    Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment

    Get PDF
    Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase–DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA–protein interaction than do tethered fluorophores. Here we report the incorporation of the 5′-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tCO), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication

    Recombinant amyloid beta-peptide production by coexpression with an affibody ligand.

    Get PDF
    BACKGROUND: Oligomeric and fibrillar aggregates of the amyloid beta-peptide (Abeta) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Abeta assemblies is essential for the elucidation of the mechanisms of Abeta neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Abeta. The method is based on the coexpression of the affibody protein ZAbeta3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAbeta3 binds to the amyloidogenic central and C-terminal part of Abeta with nanomolar affinity and consequently inhibits aggregation. RESULTS: Coexpression of ZAbeta3 affords the overexpression of both major Abeta isoforms, Abeta(1-40) and Abeta(1-42), yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Abeta. ZAbeta3 coexpression moreover permits the recombinant production of Abeta(1-42) carrying the Arctic (E22G) mutation, which causes early onset familial AD. Abeta(1-42)E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies. CONCLUSION: The coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Abeta peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G) of Abeta(1-42) is reported.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Correction to 'DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion'.

    Get PDF
    Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.publishedVersio

    TWNK in Parkinson's Disease: A Movement Disorder and Mitochondrial Disease Center Perspective Study

    Get PDF
    Background: Parkinsonian features have been described in patients harboring variants in nuclear genes encoding for proteins involved in mitochondrial DNA maintenance, such as TWNK. Objectives: The aim was to screen for TWNK variants in an Italian cohort of Parkinson's disease (PD) patients and to assess the occurrence of parkinsonism in patients presenting with TWNK-related autosomal dominant progressive external ophthalmoplegia (TWNK-adPEO). Methods: Genomic DNA of 263 consecutively collected PD patients who underwent diagnostic genetic testing was analyzed with a targeted custom gene panel including TWNK, as well as genes causative of monogenic PD. Genetic and clinical data of 18 TWNK-adPEO patients with parkinsonism were retrospectively analyzed. Results: Six of 263 PD patients (2%), presenting either with isolated PD (n = 4) or in combination with bilateral ptosis (n = 2), carried TWNK likely pathogenic variants. Among 18 TWNK-adPEO patients, 5 (28%) had parkinsonism. Conclusions: We show candidate TWNK variants occurring in PD without PEO. This finding will require further confirmatory studies. © 2022 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society

    Mechanisms for control of nucleoside triphosphate hydrolysis. Effects of DNA and RNA co-factors

    No full text
    In energetically unfavourable biological processes "protein machines" utilize chemical energy from the hydrolysis of high-energy phosphate bonds. Thus, the hydrolysis of a nucleoside triphosphate (NTP) to nucleoside diphosphate (NDP) with the release of free orthophosphate results in a liberation of energy. In addition, proteins that work as switches or gates in order to ensure fidelity and directionality to many synthetic and signal transduction processes also use NTP hydrolysis. This thesis describes the studies of the mechanisms involved in controlling the GTP and ATP binding and hydrolysis by the Ffh and FtsY proteins from the bacterial Signal Recognition Particle, SRP, and the origin binding protein, OBP, or UL9 from the Herpes simplex virus type 1 replication machinery.The Ffh and FtsY proteins from Mycoplasma mycoides are unusual GTPases because they act as GAPs for each other. We show that the reciprocal GTPase stimulation occurs when the G-domains of the proteins are combined in vitro. This finding indicates that important elements of the basic GTPase activation mechanism reside in the G-domains as such and that the other domains of Ffh and FtsY only serve to modulate the activation. We also show that binding of GTP to Ffh results in significant conformational changes of the protein. In particular, a region near the C-terminus of the G-domain becomes more ordered as a result of nucleotide binding. This region is close to sites where the G-domain interacts with other domains of the protein. Therefore, the structural changes that we observe may be part of a mechanism where GTP binding induces conformational changes in other domains of Ffh.OBP acts as the initiator for replication of the HSV-1 genome. It acts by converting the double-stranded origin of DNA replication oriS to an activated partially single-stranded conformation referred to as oriS*. The reaction requires ATP hydrolysis. We demonstrate genetically that oriS* most likely is formed in vivo. We also show that oriS* is an efficient activator of ATP hydrolysis and that stimulation of ATP hydrolysis requires binding to a hairpin containing the recognition sequence for OBP and position-specific base-contacts with a 3' single-stranded tail. Gel retardation experiments indicate furthermore that OBP adopts different conformations in the presence of ATP or ADP.Finally, the diverse roles that RNA and DNA have on regulation of hydrolysis of nucleoside triphosphates are discussed

    Selective mitochondrial DNA degradation following double-strand breaks.

    No full text
    Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs

    The rapid loss of mtDNA is not correlated to a loss of mitochondria, autophagy or apoptosis.

    No full text
    <p>Levels of <b>A</b>. mitochondrial proteins and <b>C</b>. an autophagy marker before induction and during the recovery period after induction of PstI for 2h with doxycycline. Total cell lysates (20 μg) were analyzed by western blot with antibodies against markers of the mitochondrial matrix (PDH), mitochondrial outer membrane (Tomm20), autophagy (LC3) and mitophagy (PINK1). CCCP is used as a positive control and Tubulin is used as loading control. Analysis of <b>B</b>. cell mitochondrial content and <b>D</b>. apoptosis by flow cytometry before induction and during the recovery period. * P ≤ 0.05 versus non-induced PstI cells for each cell population (Student’s t-test).</p

    A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA polymerase gamma

    No full text
    Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction
    corecore