29 research outputs found

    Prognostic factors to succeed in surgical treatment of chronic acromioclavicular dislocations

    Get PDF
    AbstractIntroductionTreatment of chronic acromioclavicular joint dislocation (ACJD) remains a poorly known and controversial subject. Given the many surgical options, it is not always easy to determine which steps are indispensable.MethodsThis article reports a multicenter prospective study. The clinical and radiological follow-up involved a comparative analysis of the preoperative and postoperative data at 1 year, including pain (visual analogue scale), subjective functional incapacity (QuickDASH), and the objective Constant score, as well as a comparative analysis of vertical and horizontal movements measured on simple x-rays.ResultsBased on a series of 140 operated ACJDs, we included 24 chronic ACJDs. The mean time to surgery was 46 weeks (range, 1 month to 4 years). The patients’ mean age was 41 years, with a majority of males (75%), 72% of whom participated in recreational sports. Professionally, 40% of the subjects had jobs involving manual labor. We noted 40% grade III, 24% grade IV, and 36% grade V injury according to the Rockwood classification. In 92% of cases, coracoclavicular stabilization was provided by a double button implant, reinforced with a biological graft in 88% of the cases. In 29%, millimeters to centimeters of the distal clavicle were resected and acromioclavicular stabilization was associated in 54%. We observed complications in 33% of the cases. At 1 year postoperative, 21 patients underwent clinical and radiological follow-up (87.5%). Only 35% of the patients were satisfied or very satisfied, whereas 100% of them would recommend the operation. Full-time work was resumed in 91% of the cases and all sports could be resumed in 86%. The pre- and postoperative values at 1 year changed as follows: the mean Constant score improved from 61 to 87 (p=0.00002); the subjective QuickDASH score decreased from 41 to 9 (p=0.00002); and radiologically significant reduction of the initial displacement was observed in the vertical plane (p<10−3) and the horizontal plane (p=0.022).ConclusionIn this study, the favorable prognostic factors found were: time to surgery less than 3 months (p=0.02), associated acromioclavicular stabilization, and postoperative immobilization with a sling extended to 6 weeks. However, resection of the distal clavicle did not influence the final result.Level of proofLevel II prospective non-randomized comparative study

    Intestinal Epithelial Cell-Specific Deletion of PLD2 Alleviates DSS-Induced Colitis by Regulating Occludin

    Get PDF
    Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis

    Dépistage du risque de déclin fonctionnel par une équipe gériatrique mobile au sein d'un hôpital général

    No full text
    The Mobile Geriatric Team (MGT) is part of the Geriatric Care Program and aims to provide interdisciplinary geriatric expertise to other professionals for old patients hospitalized outside geriatric department. Our hospital has a MGT since 2008. Our objective is to retrospectively describe the population of patients of 75 years and older hospitalized outside the geriatric ward and screened for the risk of functional decline by the MGT between 1 October 2009 and 30 September 2011. We recorded the risk of functional decline, as indicated by the Identification of Senior At Risk score (ISAR) performed within 48 h after admission, place of living, discharge destination, Mini Mental State Examination (MMSE) and Geriatric Depression Scale (GDS) scores. In two years, 1.568 patients ≥ 75 Y were screened with the ISAR score (mean age 82.5 Y, 60.7% of women). We identified 833 patients with a high-risk of functional decline (ISAR ≥ 3). The majority of high-risk subjects (78%) were living at home before hospitalization and 58.7% returned home after discharge. Depression and cognitive impairment were identified among respectively 41% and 59% of high-risk subjects. Only 128 patients were admitted for fall. Most of the faller patients were living at home prior hospitalization and had an ISAR score ≥ 3. The MGT allowed identifying many patients ≥ 75 Y living at home and presenting with high-risk of functional decline and geriatric syndromes, confirming that good screening procedures are necessary to optimize management of hospitalized olders. Most of faller patients have an ISAR score ≥ 3 and should benefit a comprehensive geriatric assessment.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration.

    No full text
    Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa
    corecore