11 research outputs found

    "4D Biology for health and disease" workshop report

    Get PDF
    The "4D Biology Workshop for Health and Disease", held on 16-17th ofMarch 2010 in Brussels, aimed at finding the best organising principlesfor large-scale proteomics, interactomics and structural genomics/biology initiatives, and setting the vision for future high-throughputresearch and large-scale data gathering in biological and medical science.Major conclusions of the workshop include the following. (i)Development of new technologies and approaches to data analysis iscrucial. Biophysical methods should be developed that span a broadrange of time/spatial resolution and characterise structures andkinetics of interactions. Mathematics, physics, computational andengineering tools need to be used more in biology and new tools needto be developed. (ii) Database efforts need to focus on improveddefinitions of ontologies and standards so that system-scale data andassociated metadata can be understood and shared efficiently. (iii)Research infrastructures should play a key role in fosteringmultidisciplinary research, maximising knowledge exchange betweendisciplines and facilitating access to diverse technologies. (iv)Understanding disease on a molecular level is crucial. Systemapproaches may represent a new paradigm in the search for biomarkersand new targets in human disease. (v) Appropriate education andtraining should be provided to help efficient exchange of knowledgebetween theoreticians, experimental biologists and clinicians. Theseconclusions provide a strong basis for creating major possibilities inadvancing research and clinical applications towards personalisedmedicine.Biophysical Structural Chemistr

    Publisher Correction: LifeTime and improving European healthcare through cell-based interceptive medicine (Nature, (2020), 587, 7834, (377-386), 10.1038/s41586-020-2715-9)

    No full text
    In this Perspective, owing to an error in the HTML, the surname of author Alejandro López-Tobón of the LifeTime Community Working Groups consortium was indexed as ‘Tobon’ rather than ‘López-Tobón’ and the accents were missing. The HTML version of the original Perspective has been corrected; the PDF and print versions were always correct. © 2021, The Author(s)

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Get PDF
    LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.We would like to acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many exciting presentations and discussions. We thank Johannes Richers for artwork. LifeTime has received funding from the European Unionʼs Horizon 2020 research and innovation framework programme under Grant agreement 820431
    corecore