23,345 research outputs found

    Surprises in the suddenly-expanded infinite well

    Full text link
    I study the time-evolution of a particle prepared in the ground state of an infinite well after the latter is suddenly expanded. It turns out that the probability density Ψ(x,t)2|\Psi(x, t)|^{2} shows up quite a surprising behaviour: for definite times, {\it plateaux} appear for which Ψ(x,t)2|\Psi(x, t)|^{2} is constant on finite intervals for xx. Elements of theoretical explanation are given by analyzing the singular component of the second derivative xxΨ(x,t)\partial_{xx}\Psi(x, t). Analytical closed expressions are obtained for some specific times, which easily allow to show that, at these times, the density organizes itself into regular patterns provided the size of the box in large enough; more, above some critical time-dependent size, the density patterns are independent of the expansion parameter. It is seen how the density at these times simply results from a construction game with definite rules acting on the pieces of the initial density.Comment: 24 pages, 14 figure

    Superconductor-proximity effect in chaotic and integrable billiards

    Get PDF
    We explore the effects of the proximity to a superconductor on the level density of a billiard for the two extreme cases that the classical motion in the billiard is chaotic or integrable. In zero magnetic field and for a uniform phase in the superconductor, a chaotic billiard has an excitation gap equal to the Thouless energy. In contrast, an integrable (rectangular or circular) billiard has a reduced density of states near the Fermi level, but no gap. We present numerical calculations for both cases in support of our analytical results. For the chaotic case, we calculate how the gap closes as a function of magnetic field or phase difference.Comment: 4 pages, RevTeX, 2 Encapsulated Postscript figures. To be published by Physica Scripta in the proceedings of the "17th Nordic Semiconductor Meeting", held in Trondheim, June 199

    Multiple jet impingement heat transfer characteristic: Experimental investigation of in-line and staggered arrays with crossflow

    Get PDF
    Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction

    Quantum to classical transition in a system with a mixed classical dynamics

    Get PDF
    We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show that for regular and mixed classical dynamics, and in the presence of noise, the distance between the classical and the quantum phase space distributions is proportional to a single parameter χKeff2/4D3/2\chi\equiv K\hbar_{\rm eff}^2/4D^{3/2} which relates the effective Planck constant eff\hbar_{\rm eff}, the kick amplitude KK and the diffusion constant DD. This is valid when χ<1\chi < 1, a case that is always attainable in the semiclassical regime independently of the value of the strength of noise given by DD. Our results extend a recent study performed in the chaotic regime.Comment: 10 pages, 7 figure

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Observation of a Chiral State in a Microwave Cavity

    Full text link
    A microwave experiment has been realized to measure the phase difference of the oscillating electric field at two points inside the cavity. The technique has been applied to a dissipative resonator which exhibits a singularity -- called exceptional point -- in its eigenvalue and eigenvector spectrum. At the singularity, two modes coalesce with a phase difference of π/2.\pi/2 . We conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    Induced superconductivity distinguishes chaotic from integrable billiards

    Get PDF
    Random-matrix theory is used to show that the proximity to a superconductor opens a gap in the excitation spectrum of an electron gas confined to a billiard with a chaotic classical dynamics. In contrast, a gapless spectrum is obtained for a non-chaotic rectangular billiard, and it is argued that this is generic for integrable systems.Comment: 4 pages RevTeX, 2 eps-figures include

    Decoherence and the quantum-classical limit in the presence of chaos

    Full text link
    We investigate how decoherence affects the short-time separation between quantum and classical dynamics for classically chaotic systems, within the framework of a specific model. For a wide range of parameters, the distance between the corresponding phase-space distributions depends on a single parameter χ\chi that relates an effective Planck constant eff\hbar_{\rm eff}, the Lyapunov coeffficient, and the diffusion constant. This distance peaks at a time that depends logarithmically on eff\hbar_{\rm eff}, in agreement with previous estimations of the separation time for Hamiltonian systems. However, for χ1\chi\lesssim 1, the separation remains small, going down with eff2\hbar_{\rm eff}^2, so the concept of separation time loses its meaning.Comment: 5 pages, 4 figures (in 6 postscript files) two of them are color figure

    Classical and quantum chaos in a circular billiard with a straight cut

    Full text link
    We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. This system can be integrable, nonintegrable with soft chaos, or nonintegrable with hard chaos, as we vary the size of the cut. We use a quantum web to show differences in the quantum manifestations of classical chaos for these three different regimes.Comment: LaTeX2e, 8 pages including 3 Postscript figures and 4 GIF figures, submitted to Phys. Rev.
    corecore