27,467 research outputs found
Poliovirus mutant that contains a cold-sensitive defect in viral RNA synthesis
By manipulating an infectious cDNA clone of poliovirus, we have introduced a single-codon insertion into the 3A region of the viral genome which has been proposed to encode a functional precursor of the virion-linked protein VPg. The resulting mutant was cold sensitive in monkey kidney cells. Viral RNA synthesis was poor at 32.5 degrees C, although no other function of the virus was obviously affected. The synthesis of both positive and negative strands was severely depressed. Temperature shift experiments suggest that a normal level of production of the affected function was required only during the early (exponential) phase of RNA synthesis. Analysis of viral polyprotein processing at the nonpermissive temperature revealed that some of the normal cleavages were not made, most likely as a consequence of the defect in RNA synthesis or as a result of the concomitant reduction in the level of virally encoded proteases
Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs
The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated
Implementation of robust image artifact removal in SWarp through clipped mean stacking
We implement an algorithm for detecting and removing artifacts from
astronomical images by means of outlier rejection during stacking. Our method
is capable of addressing both small, highly significant artifacts such as
cosmic rays and, by applying a filtering technique to generate single frame
masks, larger area but lower surface brightness features such as secondary
(ghost) images of bright stars. In contrast to the common method of building a
median stack, the clipped or outlier-filtered mean stacked point-spread
function (PSF) is a linear combination of the single frame PSFs as long as the
latter are moderately homogeneous, a property of great importance for weak
lensing shape measurement or model fitting photometry. In addition, it has
superior noise properties, allowing a significant reduction in exposure time
compared to median stacking. We make publicly available a modified version of
SWarp that implements clipped mean stacking and software to generate single
frame masks from the list of outlier pixels.Comment: PASP accepted; software for download at
http://www.usm.uni-muenchen.de/~dgruen
Photometric Redshift Biases from Galaxy Evolution
Proposed cosmological surveys will make use of photometric redshifts of
galaxies that are significantly fainter than any complete spectroscopic
redshift surveys that exist to train the photo-z methods. We investigate the
photo-z biases that result from known differences between the faint and bright
populations: a rise in AGN activity toward higher redshift, and a metallicity
difference between intrinsically luminous and faint early-type galaxies. We
find that even very small mismatches between the mean photometric target and
the training set can induce photo-z biases large enough to corrupt derived
cosmological parameters significantly. A metallicity shift of ~0.003dex in an
old population, or contamination of any galaxy spectrum with ~0.2% AGN flux, is
sufficient to induce a 10^-3 bias in photo-z. These results highlight the
danger in extrapolating the behavior of bright galaxies to a fainter
population, and the desirability of a spectroscopic training set that spans all
of the characteristics of the photo-z targets, i.e. extending to the 25th mag
or fainter galaxies that will be used in future surveys
Implications and Policy Options of California's Reliance on Natural Gas
Examines existing and currently anticipated infrastructure, rising gas prices, and recurring supply problems, and looks at options to alleviate the problem. Part of a series of research reports that examines energy issues facing California
Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors
The potential of elastic antineutrino-electron scattering in a Gd-doped water
Cherenkov detector to determine the direction of a nuclear reactor antineutrino
flux was investigated using the recently proposed WATCHMAN antineutrino
experiment as a baseline model. The expected scattering rate was determined
assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the
detector response was modeled using a Geant4-based simulation package.
Background was estimated via independent simulations and by scaling published
measurements from similar detectors. Background contributions were estimated
for solar neutrinos, misidentified reactor-based inverse beta decay
interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from
the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show
that with the use of low background PMTs and sufficient fiducialization,
water-borne radon and cosmogenic radionuclides pose the largest threats to
sensitivity. Directional sensitivity was then analyzed as a function of radon
contamination, detector depth, and detector size. The results provide a list of
experimental conditions that, if satisfied in practice, would enable
antineutrino directional reconstruction at 3 significance in large
Gd-doped water Cherenkov detectors with greater than 10-km standoff from a
nuclear reactor.Comment: 11 pages, 9 figure
Large-scale sea surface temperature variability from satellite and shipboard measurements
A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor
Nucleation of colloids and macromolecules: does the nucleation pathway matter?
A recent description of diffusion-limited nucleation based on fluctuating
hydrodynamics that extends classical nucleation theory predicts a very
non-classical two-step scenario whereby nucleation is most likely to occur in
spatially-extended, low-amplitude density fluctuations. In this paper, it is
shown how the formalism can be used to determine the maximum probability of
observing \emph{any} proposed nucleation pathway, thus allowing one to address
the question as to their relative likelihood, including of the newly proposed
pathway compared to classical scenarios. Calculations are presented for the
nucleation of high-concentration bubbles in a low-concentration solution of
globular proteins and it is found that the relative probabilities (new theory
compared to classical result) for reaching a critical nucleus containing
molecules scales as thus indicating that for all but the smallest
nuclei, the classical scenario is extremely unlikely.Comment: 7 pages, 5 figure
Calculated collision induced absorption spectrum for He-Ar
Calculation of collision induced absorption spectra for helium-argo
- …