1,944 research outputs found

    Cage rattling does not correlate with the local geometry in molecular liquids

    Get PDF
    Molecular-dynamics simulations of a liquid of short linear molecules have been performed to investigate the correlation between the particle dynamics in the cage of the neighbors and the local geometry. The latter is characterized in terms of the size and the asphericity of the Voronoi polyhedra. The correlation is found to be poor. In particular, in spite of the different Voronoi volume around the end and the inner monomers of a molecule, all the monomers exhibit coinciding displacement distribution when they are caged (as well as at longer times during the structural relaxation). It is concluded that the fast dynamics during the cage trapping is a non-local collective process involving monomers beyond the nearest neighbours.Comment: 15 pages, 6 figure

    Does urbanization matter in the expenditure-happiness nexus?

    Get PDF
    This study aims to improve the regional well-being literature on the so-called “reversal issue” of the expenditure-happiness nexus, accounting for two main sources of heterogeneity: degree of urbanization and individual spending habits. Moreover, we investigate the role of happiness across the entire expenditure distribution using a quantile modelling approach. The results show that satisfaction has a positive, significant and non-linear effect on total expenditure across different urbanization categories. To better investigate the multidimensional nature of happiness, analysis of the nexus is expounded to different satisfaction domains and related spending aggregates offering a comprehensive and complex behavioural profile of individuals

    Competition of the connectivity with the local and the global order in polymer melts and crystals

    Get PDF
    The competition between the connectivity and the local or global order in model fully-flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Q_l (l = 2 - 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles {\theta} = 70{\deg}, 122{\deg}, 180{\deg}. The fractions of adjacent radial bonds with {\theta} = 122{\deg}, 180{\deg} are enhanced by the global order of the crystal, whereas the fraction with 70{\deg} < {\theta} < 110{\deg} is nearly unaffected by the crystallization. Kink defects, i.e. large lateral displacements of the chains, are evidenced in the crystalline state.Comment: J. Chem. Phys. in pres

    The surface accessibility of α-bungarotoxin monitored by a novel paramagnetic probe

    Get PDF
    The surface accessibility of {alpha}-bungarotoxin has been investigated by using Gd2L7, a newly designed paramagnetic NMR probe. Signal attenuations induced by Gd2L7 on {alpha}-bungarotoxin C{alpha}H peaks of 1H-13C HSQC spectra have been analyzed and compared with the ones previously obtained in the presence of GdDTPA-BMA. In spite of the different molecular size and shape, for the two probes a common pathway of approach to the {alpha}-bungarotoxin surface can be observed with an equally enhanced access of both GdDTPA-BMA and Gd2L7 towards the protein surface side where the binding site is located. Molecular dynamics simulations suggest that protein backbone flexibility and surface hydration contribute to the observed preferential approach of both gadolinium complexes specifically to the part of the {alpha}-bungarotoxin surface which is involved in the interaction with its physiological target, the nicotinic acetylcholine receptor

    Anti-Inflammatory Properties of Statin-Loaded Biodegradable Lecithin/Chitosan Nanoparticles: A Step Toward Nose-to-Brain Treatment of Neurodegenerative Diseases

    Get PDF
    Nasal delivery has been indicated as one of the most interesting alternative routes for the brain delivery of neuroprotective drugs. Nanocarriers have emerged as a promising strategy for the delivery of neurotherapeutics across the nasal epithelia. In this work, hybrid lecithin/chitosan nanoparticles (LCNs) were proposed as a drug delivery platform for the nasal administration of simvastatin (SVT) for the treatment of neuroinflammatory diseases. The impact of SVT nanoencapsulation on its transport across the nasal epithelium was investigated, as well as the efficacy of SVT-LCNs in suppressing cytokines release in a cellular model of neuroinflammation. Drug release studies were performed in simulated nasal fluids to investigate SVT release from the nanoparticles under conditions mimicking the physiological environment present in the nasal cavity. It was observed that interaction of nanoparticles with a simulated nasal mucus decreased nanoparticle drug release and/or slowed drug diffusion. On the other hand, it was demonstrated that two antibacterial enzymes commonly present in the nasal secretions, lysozyme and phospholipase A2, promoted drug release from the nanocarrier. Indeed, an enzyme-triggered drug release was observed even in the presence of mucus, with a 5-fold increase in drug release from LCNs. Moreover, chitosan-coated nanoparticles enhanced SVT permeation across a human cell model of the nasal epithelium (×11). The nanoformulation pharmacological activity was assessed using an accepted model of microglia, obtained by activating the human macrophage cell line THP-1 with the Escherichia coli-derived lipopolysaccharide (LPS) as the pro-inflammatory stimulus. SVT-LCNs were demonstrated to suppress the pro-inflammatory signaling more efficiently than the simple drug solution (-75% for IL-6 and -27% for TNF-α vs. -47% and -15% at 10 ”M concentration for SVT-LCNs and SVT solution, respectively). Moreover, neither cellular toxicity nor pro-inflammatory responses were evidenced for the treatment with the blank nanoparticles even after 36 h of incubation, indicating a good biocompatibility of the nanomedicine components in vitro. Due to their biocompatibility and ability to promote drug release and absorption at the biointerface, hybrid LCNs appear to be an ideal carrier for achieving nose-to-brain delivery of poorly water-soluble drugs such as SVT

    Sustainability, Innovation, and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea europaea L.

    Get PDF
    This paper describes a circular economy process based on environmentally and economically sustainable procedures which was applied to the sector of olive oil processing on an industrial scale. Olea europaea L. tissues and by-products represent a renewable and low-cost source of polyphenols, in particular hydroxytyrosol (HTyr), a naturally occurring compound well known for its biological properties. Specifically, green leaves (GL), dried leaves (DL), and pitted olive pulp were treated with water in a pneumatic extractor to obtain the corresponding polyphenolic extracts. Three standardized fractions, named Soft Extract Olea GL, Soft Extract Olea DL, and Soft Extract Olea HTyr resulted after the following two steps: a separation process carried out by membrane technology, and a concentration step performed under reduced pressure and low temperature. The polyphenolic fractions showed antiradical activity and have potential industrial applications in the food, nutraceutical, pharmaceutical, feed, and agronomic fields. Novel functionalized extracts containing hydroxytyrosol methyl carbonate (HTyr-MC) were obtained from Soft Extract Olea HTyr through an innovative approach based on green chemistry procedures, which appear to be a promising tool to increase the applications of the polyphenolic extracts

    Towards Micromechanical Sensors with (La,Sr)MnO3 Epitaxial Films☆

    Get PDF
    Abstract The rich spectrum of functionalities exhibited by oxide thin films is an appealing feature for the development of micro and nanomechanical devices [1,2] . MEMS made of heterostructures of crystalline oxide materials having targeted physical properties may be applied as sensors having different integrated functionalities. In this work, we explore the feasibility of manganite thin film based epitaxial MEMS for magnetic micromechanical sensing. We investigate the electromechanical properties of LSMO freestanding structures for future applications in the field of micromechanical magnetic sensors

    Structural properties of adsorbent phyllosilicates rule the entrapping ability of intercalated iron-phenanthroline complex towards thiols

    Get PDF
    The interaction of volatile organic sulfur derivatives, such as 1-heptanethiol (C7H16S), with clay minerals treated with a ÎŒ-oxo Fe3+-phenanthroline 1:1 complex results strongly affected by crystal chemical properties of pristine mineral phases. In particular, two sepiolite clays with different structural features demonstrated significantly different ability to immobilize the Fe3+-phenanthroline complex at two pH values (pH = 5.4 and pH = 2.3). The most effective binding was obtained with sepiolite with higher structural disorder at pH 5.4. Accordingly, the resulting hybrid material showed also the greatest efficiency in removal of thiol in gas phase. A direct correlation can be established between the adsorption of the Fe3+-phenanthroline complex and the gas binding process at room temperature. In fact, 1-heptanethiol entrapping occurs via redox reactions between Fe3+ and a first thiol molecule to give the reduced Fe2+-phenanthroline complex and disulfide, followed by the binding of further thiols to the reduced metal centre. The extremely high amount of thiol immobilized by the hybrid material also suggests the co-presence of a catalytic mechanism that guarantees the reoxidation of Fe+2 to Fe+3 and the restoration of redox reactions with thiol. Investigation and conclusions were supported by the several experimental techniques: elemental analysis, X-ray powder diffraction analyses, UV–Vis measurements, FT-IR and NMR spectroscopies, thermogravimetric analyses
    • 

    corecore