476 research outputs found

    Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age

    Get PDF
    This observational study aimed to use artificial intelligence to describe the impact of orthognathic treatment on facial attractiveness and age appearance. Pre- and post-treatment photographs (n=2164) of 146 consecutive orthognathic patients were collected for this longitudinal retrospective single-centre study. Every image was annotated with patient-related data (age; sex; malocclusion; performed surgery). For every image, facial attractiveness (score: 0-100) and apparent age were established with dedicated convolutional neural networks trained on >0.5million images for age estimation and with >17million ratings for attractiveness. Results for pre- and post-treatment photographs were averaged for every patient separately, and apparent age compared to real age (appearance). Changes in appearance and facial attractiveness were statistically examined. Analyses were performed on the entire sample and subgroups (sex; malocclusion; performed surgery). According to the algorithms, most patients' appearance improved with treatment (66.4%), resulting in younger appearance of nearly 1year [mean change: -0.93years (95% confidence interval (CI): -1.50; -0.36); p=0.002), especially after profile-altering surgery. Orthognathic treatment had similarly a beneficial effect on attractiveness in 74.7% [mean difference: 1.22 (95% CI: 0.81; 1.63); p<0.001], especially after lower jaw surgery. This investigation illustrates that artificial intelligence might be considered to score facial attractiveness and apparent age in orthognathic patients

    Weak links between fast mobility and local structure in molecular and atomic liquids

    Get PDF
    We investigate by molecular-dynamics simulations, the fast mobility-the rattling amplitude of the particles temporarily trapped by the cage of the neighbors-in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes

    Programmable Edge-to-Cloud Virtualization for 5G Media Industry: The 5G-MEDIA Approach

    Get PDF
    To ensure high Quality of Experience (QoE) for end users, many media applications require significant quantities of computing and network resources, making their realization challenging in resource constrained environments. In this paper, we present the approach of the 5G-MEDIA project, providing an integrated programmable service platform for the development, design and operations of media applications in 5G networks, facilitating media service management across the service life cycle. The platform offers tools to service developers for efficient development, testing and continuous correction of services. One step further, it provides a service virtualization platform offering horizontal services, such as a Media Service Catalogue and accounting services, as well as optimization mechanisms to flexibly adapt service operations to dynamic conditions with efficient use of infrastructure resources. The paper outlines three use cases where the platform was tested and validated

    Network‐scale effects of invasive species on spatially‐structured amphibian populations

    Get PDF
    Understanding the factors affecting the dynamics of spatially‐structured populations (SSP) is a central topic of conservation and landscape ecology. Invasive alien species are increasingly important drivers of the dynamics of native species. However, the impacts of invasives are often assessed at the patch scale, while their effects on SSP dynamics are rarely considered. We used long‐term abundance data to test whether the impact of invasive crayfish on subpopulations can also affect the whole SSP dynamics, through their influence on source populations. From 2010 to 2018, we surveyed a network of 58 ponds and recorded the abundance of Italian agile frog clutches, the occurrence of an invasive crayfish, and environmental features. Using Bayesian hierarchical models, we assessed relationhips between frog abundance in ponds and a) environmental features; b) connectivity within the SSP; c) occurrence of invasive species at both the patch‐ and the SSP‐levels. If spatial relationships between ponds were overlooked, we did not detect effects of crayfish presence on frog abundance or trends. When we jointly considered habitat, subpopulation and SSP features, processes acting at all these levels affected frog abundance. At the subpopulation scale, frog abundance in a year was related to habitat features, but was unrelated to crayfish occurrence at that site during the previous year. However, when we considered the SSP level, we found a strong negative relationship between frog abundance in a given site and crayfish frequency in surrounding wetlands during the previous year. Hence, SSP‐level analyses can identify effects that would remain unnoticed when focussing on single patches. Invasive species can affect population dynamics even in not invaded patches, through the degradation of subpopulation networks. Patch‐scale assessments of the impact of invasive species can thus be insufficient: predicting the long‐term interplay between invasive and native populations requires landscape‐level approaches accounting for the complexity of spatial interactions

    An oribatid mite (Arachnida: Acari) from the Oxford Clay (Jurassic: Upper Callovian) of South Cave Station Quarry, Yorkshire, UK

    Get PDF
    A single specimen of a new species of oribatid mite belonging to the genus Jureremus Krivolutsky, in Krivolutsky and Krassilov 1977, previously described from the Upper Jurassic of the Russian Far East, is described as J. phippsi sp. nov. The mite is preserved by iron pyrite replacement, and was recovered by sieving from the Oxford Clay Formation (Jurassic: Upper Callovian) of South Cave, Yorkshire. It is the first record of a pre-Pleistocene mite, and the second species record of the family Cymbaeremaeidae, from the British Isles; also, it is only the third record of Acari from the Jurassic Period. The presence of a terrestrial mite in a sedimentary sequence of open marine origin is noteworthy, and suggestions for its mode of transport to the site of deposition are discussed

    A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies.

    Get PDF
    Background: Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. Methods: This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. Results: The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 ÎŒA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. Conclusions: The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation

    Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period

    Get PDF
    The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery

    “A long-term mortality analysis of subsidized firms in rural areas: an empirical study in the Portuguese Alentejo region”

    Get PDF
    Studies have demonstrated that public policies to support private firms’ investment have the ability to promote entrepreneurship, but the sustainability of subsidized firms has not often been analysed. This paper aims to examine this dimension specifically through evaluating the mortality of subsidized firms in the long-term. The analysis focuses on a case study of the LEADER+ Programme in the Alentejo region of Portugal. With this purpose, the paper examines the activity status (active or not active) of 154 private, rural, for-profit firms in Alentejo that had received a subsidy to support investment between 2002 and 2008 under the LEADER+ Programme. The methodology is based on binary choice models in order to study the probability of these firms still being active. The explanatory variables used are the following: (1) the characteristics of entrepreneurs and managers’ strategic decisions, (2) firm profile and characteristics, (3) regional economic environment. Data assessment showed that the cumulative mortality rate of firms on 31st December 2013 is over 20 %. Interpretation of the regression model revealed that he probability of firms’ survival increases with higher investment, firm age and regional business concentration, whereas the number of applications made by firms has a negative impact on their survival. So it seems that for subsidized firms the amount of investment is as important as its frequency

    Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-Templated Silica

    Full text link
    This paper reports the cross-plane thermal conductivity of ordered mesoporous nanocrystalline silicon thin films between 25 and 315 K. The films were produced by evaporation induced self-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon was characterized by X-ray diffraction and direct SEM imaging. The average crystallite size, porosity, and film thickness were about 13 nm, 25-35%, and 140-340 nm, respectively. The pores were arranged in a face-centered cubic lattice. The cross-plane thermal conductivity of the mesoporous silicon thin films was measured using the 3ω method. It was between 3 and 5 orders of magnitude smaller than that of bulk single crystal silicon in the temperature range considered. The effects of temperature, film thickness, and copolymer template on the thermal conductivity were investigated. A model based on kinetic theory was used to accurately predict the measured thermal conductivity for all temperatures. On the one hand, both the measured thermal conductivity and the model predictions showed a temperature dependence of k proportional to T2 at low temperatures, typical of amorphous and strongly disordered materials. On the other hand, at high temperatures the thermal conductivity of mesoporous silicon films reached a maximum, indicating a crystalline-like behavior. These results will be useful in designing mesoporous silicon with desired thermal conductivity by tuning its morphology for various applications
    • 

    corecore