7,198 research outputs found
On the Duality of Probing and Fault Attacks
In this work we investigate the problem of simultaneous privacy and integrity
protection in cryptographic circuits. We consider a white-box scenario with a
powerful, yet limited attacker. A concise metric for the level of probing and
fault security is introduced, which is directly related to the capabilities of
a realistic attacker. In order to investigate the interrelation of probing and
fault security we introduce a common mathematical framework based on the
formalism of information and coding theory. The framework unifies the known
linear masking schemes. We proof a central theorem about the properties of
linear codes which leads to optimal secret sharing schemes. These schemes
provide the lower bound for the number of masks needed to counteract an
attacker with a given strength. The new formalism reveals an intriguing duality
principle between the problems of probing and fault security, and provides a
unified view on privacy and integrity protection using error detecting codes.
Finally, we introduce a new class of linear tamper-resistant codes. These are
eligible to preserve security against an attacker mounting simultaneous probing
and fault attacks
Investigating the central diffractive f0(980) and f2(1270) meson production at the LHC
The central diffractive production of mesons f0(980) and f2(1270) at the
energy of CERN-LHC experiment on proton-proton collisions is investigated. The
processes initiated by quasi-real photon-photon collisions and by central
diffraction processes are considered. The role played by the photon-Odderon
production channel is also studied. The cross sections for these distinct
production channels are compared and analyzed.Comment: 7 pages, 4 tables. Final version to be published in Physical Review
D. arXiv admin note: text overlap with arXiv:hep-ph/0508196,
arXiv:hep-ph/0506101 by other author
Quantized Conductance of a Single Magnetic Atom
A single Co atom adsorbed on Cu(111) or on ferromagnetic Co islands is
contacted with non-magnetic W or ferromagnetic Ni tips in a scanning tunneling
microscope. When the Co atom bridges two non-magnetic electrodes conductances
of 2e^2/h are found. With two ferromagnetic electrodes a conductance of e^2/h
is observed which may indicate fully spin-polarized transport.Comment: 3 pages, 2 figure
Theoretical analysis of STM-derived lifetimes of excitations in the Shockley surface state band of Ag(111)
We present a quantitative many-body analysis using the GW approximation of
the decay rate due to electron-electron scattering of excitations in
the Shockley surface state band of Ag(111), as measured using the scanning
tunnelling microscope (STM). The calculations include the perturbing influence
of the STM, which causes a Stark-shift of the surface state energy and
concomitant increase in . We find varies more rapidly with
than recently found for image potential states, where the STM has been shown to
significantly affect measured lifetimes. For the Shockley states, the
Stark-shifts that occur under normal tunnelling conditions are relatively small
and previous STM-derived lifetimes need not be corrected.Comment: 4 pages, 3 figure
Momentum Broadening of a Fast Parton in a Perturbative Quark-Gluon Plasma
The average transverse momentum transfer per unit path length to a fast
parton scattering elastically in a perturbative quark-gluon plasma is related
to the radiative energy loss of the parton. We first calculate the momentum
transfer coefficient in terms of a classical Langevin problem and then
define it quantum-mechanically through scattering matrix element. After
treating the well known case of a quark-gluon plasma in equilibrium we consider
an off-equilibrium unstable plasma. As a specific example, we treat the
two-stream plasma with unstable modes of longitudinal chromoelectric field. In
the presence of the instabilities, is shown to exponentially grow in
time.Comment: Updated version containing an analysis of insufficiencies in previous
calculations of momentum broadening in unstable plasma
Faster, Smaller, Cheaper: An Hedonic Price Analysis of PDAs
We compute quality-adjusted price indexes for Personal Digital Assistants (PDAs) for the period 1999-2004, using data on prices and characteristics of 203 models sold by 12 manufacturers. The PDA market is growing in size, it is technologically dynamic with very substantial changes in measured characteristics over time, and it has experienced rapid rates of product introduction. Hedonic regressions consistently show prices to be positively related to processor performance, RAM memory, permanent storage capacity, and battery life, as well as several measures of screen size and quality. Features such as networking, biometric identification, camera, and cellphone capability are also positively associated with price. Hedonic price indexes implied by these regressions decline at an AAGR of 21.1% to 25.6% per year during this period. A matched model price index computed from a subset of observations declines at 18.75% per year. Though these PDA rates of price decline are lower than have been estimated for desktop and laptop PCs, consumers in this "ultra-portable" segment of the computer market appear to have enjoyed substantial welfare gains over the past five years.
- …