77 research outputs found

    Detection methods predict differences in biology and survival in breast cancer patients

    Get PDF
    BackgroundThe aim of this study was to measure the biological characteristics involved in tumorigenesis and the progression of breast cancer in symptomatic and screen-detected carcinomas to identify possible differences.MethodsFor this purpose, we evaluated clinical-pathological parameters and proliferative and apoptotic activities in a series of 130 symptomatic and 161 screen-detected tumors.ResultsAfter adjustment for the smaller size of the screen-detected carcinomas compared with symptomatic cancers, those detected in the screening program presented longer disease-free survival (RR = 0.43, CI = 0.19-0.96) and had high estrogen and progesterone receptor concentrations more often than did symptomatic cancers (OR = 3.38, CI = 1.72-6.63 and OR = 3.44, CI = 1.94-6.10, respectively). Furthermore, the expression of bcl-2, a marker of good prognosis in breast cancer, was higher and HER2/neu expression was lower in screen-detected cancers than in symptomatic cancers (OR = 1.77, CI = 1.01-3.23 and OR = 0.64, CI = 0.40-0.98, respectively). However, when comparing prevalent vs incident screen-detected carcinomas, prevalent tumors were larger (OR = 2.84, CI = 1.05-7.69), were less likely to be HER2/neu positive (OR = 0.22, CI = 0.08-0.61) and presented lower Ki67 expression (OR = 0.36, CI = 0.17-0.77). In addition, incident tumors presented a shorter survival time than did prevalent ones (RR = 4.88, CI = 1.12-21.19).ConclusionsIncident carcinomas include a variety of screen-detected carcinomas that exhibit differences in biology and prognosis relative to prevalent carcinomas. The detection method is important and should be taken into account when making therapy decisions

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Biochemical components of wild relatives of chickpea confer resistance to pod borer, Helicoverpa armigera

    Get PDF
    Efforts are being made to develop chickpea varieties with resistance to the pod borer, Helicoverpa armigera for reducing pesticide use and minimizing the extent of losses due to this pest. However, only low to moderate levels of resistance have been observed in the cultivated chickpea to this polyphagous pest. Hence, it is important to explore wild relatives as resistance sources to develop insect-resistant cultivars. Therefore, we studied different biochemical components that confer resistance to H. armigera in a diverse array of wild relatives of chickpea. Accessions belonging to wild relatives of chickpea exhibited high levels of resistance to H. armigera as compared to cultivated chickpea genotypes in terms of lower larval survival, pupation and adult emergence, decreased larval and pupal weights, prolonged larval and pupal developmental periods and reduced fecundity of the H. armigera when reared on artificial diet impregnated with lyophilized leaf powders. Amounts of proteins and phenols in different accessions of chickpea wild relatives were significantly and negatively correlated with larval weight, pupation and adult emergence. Phenols showed a negative correlation with pupal weight and fecundity, but positive correlation with pupal period. Total soluble sugars showed a negative correlation with larval period, but positive correlation with pupation and pupal weight, while tannins showed a positive correlation with larval weight, pupation and adult emergence. The flavonoid compounds such as chlorogenic acid, ferulic acid, naringin, 3,4-dihydroxy flavones, quercetin, naringenin, genistein, biochanin-A and formononetin that were identified through HPLC fingerprints, exhibited negative effects on survival and development of H. armigera reared on artificial diet impregnated with lyophilized leaf powders. The wild relatives with diverse mechanisms of resistance conferred by different biochemical components can be used as sources of resistance in chickpea breeding programs to develop cultivars with durable resistance to H. armigera for sustainable crop production

    Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells

    No full text
    Rat cells transformed by (he highly oncogenic adenovirus 12 lack at least two cellular proteins which are present in cells transformed by the non-oncogenic adenovirus 5 and in untransformed cells. One protein has been identified as the heavy chain of the rat class I major histocompatibility complex. This finding may explain the difference in oncogenicity between adenoviral species
    corecore