766 research outputs found

    Mesures et prédiction des propriétés de rétention en eau des sols de la Région Centre : Utilisation de la base SOLHYDRO

    No full text
    La maîtrise de la gestion de la ressource en eau nécessite que soient mieux connues les interactions entre la couverture pédologique et l'eau et, de façon plus générale, comment interfère le système sol - plante - atmosphère avec le cycle de l'eau. La qualité des eaux superficielles et souterraines dépend de notre aptitude à apprécier le risque de transfert de produits polluants en fonction des choix de gestion qui sont faits pour les sols. Il est par conséquent important de bien connaître quelles sont les conséquences du fonctionnement hydrique des sols sur le cycle de l'eau. Pour décrire le fonctionnement hydrique de la couverture pédologique, il est nécessaire de connaître les propriétés hydriques (rétention en eau, conductivité hydraulique) des horizons qui la composent, mais la détermination de ces propriétés par méthodes expérimentales est généralement longue, coûteuse et difficile. Des outils de prédiction ont été développés pour les estimer. Ces outils sont pour l'essentiel des relations statistiques qui lient des caractéristiques du sol aisément accessibles (composition granulométrique, densité apparente, teneur en carbone organique) à des propriétés du sol difficilement accessibles. Ils constituent un moyen d'établir un lien entre ce qui est disponible dans les bases de données et les grandeurs nécessaires aux modèles qui décrivent le fonctionnement des sols. Parmi ces outils, les « classes de pédotransfert (CPT) » permettent d'estimer les propriétés hydriques après avoir regroupé et classé les sols selon leur composition. Ainsi, à chaque classe de composition correspondent des propriétés hydriques déterminées. Notre objectif dans cette étude est d'analyser les propriétés de rétention en eau de sols de la Région Centre et de les comparer avec celles obtenues avec des CPT proposées récemment pour les sols du territoire français à partir de la base de données SOLHYDR

    Impact of cone-beam computed tomography for the identification and management of an oral portal of entry in patients with infective endocarditis. A Delphi study

    Get PDF
    Infective endocarditis (IE) is a rare and life-threatening disease. Cutaneous portal of entry (POE) is predominant for IE, but an oral POE is the second most frequent source. Thus looking for and treating an oral POE in IE patients is of critical importance in order to reduce the risk of IE relapse or recurrence. The objectives of this study were: 1) To reach a consensus on decision-making following the detection of an oral POE on cone-beam computed tomography (CBCT) while they were not identified using the current recommended approach in IE patients (oral examination and orthopantomogram: OPT). 2) To determine whether this consensus differs when regarding the microbiology of IE. Twenty oral or maxillofacial surgeons participated to this Delphi study. The questionnaire was based on five radiological cases (OPT and matching CBCT) with two scenarios according to the objectives of detecting oral POE in an IE patient (curative in case of oral causative microorganism, and preventive if not) and different therapeutic approaches (surgical or conservative treatment, no treatment) for each of them. Consensus was defined as an agreement rate of ?75%. The response rate was?85%. After four rounds, consensus was achieved for all proposals. CBCT changed the decision-making of experts in four cases. In one case, the decision was influenced by the IE microbiology toward a more radical approach in case of oral causative microorganism. In IE patients, CBCT changed markedly the decision-making of experts by eradicating more oral POE than when using OPT. This could reduce the risk of IE relapse and recurrence

    Large ring 1,3-bridged 2-azetidinones: experimental and theoretical studies

    Full text link
    The relationship between angular strain and (re)activity of bicyclic 2-azetidinones is still an open question of major concern in the field of penicillin antibiotics. Our study deals with original 13-membered-ring 1,3-bridged 2-azetidinones related to the carbapenem family, and featuring a "planar amide" instead of the "twisted amide" typical of penam derivatives. The bicycles 11 and 12 were obtained from acetoxy-azetidinone 7, via the key-intermediate 10, by using the RCM (ring closing metathesis) strategy. Theoretical predictions and experimental results of hydrolysis showed that the large bicycle 12, endowed with high conformational flexibility, is more reactive than the bicycle 11, including a C=C bond of E configuration, and the monocyclic 2-azetidinone precursor 10. The processing of 2-azetidinones 10-12 in the active site of serine enzymes has been computed by ab initio methods, considering three models. Due to geometrical parameters of the enzymic cavity (nucleophilic attack from the alpha-face), precursor 10 was predicted more active than 11 and 12 in the acylation step by Ser-OH. Indeed, bicycles 11 and 12 are modest inhibitors of PBP2a, while 10 is a good to excellent inhibitor of PBP2a and R39 bacterial enzymes. (C) 2008 Elsevier Masson SAS. All rights reserved

    Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry

    Full text link
    The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS' spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 muL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes

    Membrane permeabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA

    Get PDF
    AbstractThe membrane permeabilisation properties of six linear natural 18-residue peptaibols, termed trichorzins PA, have been assessed on liposomes and on mollicutes (trivial name, mycoplasmas), a class of parasitic bacteria characterized by a small genome, the lack of a cell wall, a minute cell size, and the incorporation in their plasma membrane of exogenously supplied cholesterol. The trichorzins PA used in this study (PA II, PA IV–VI, PA VIII, and PA IX) differ between them by amino acid or amino alcohol substitutions at positions 4, 7, and 18, and form slightly amphipathic α-helices. They proved bactericidal for mollicutes belonging to the genera Acholeplasma, Mycoplasma, and Spiroplasma, with minimal inhibitory concentrations (3.12≤MICs≤50 μM) generally 2 to 4 fold higher than those of alamethicin F50, a related 20-residue peptide (1.56≤MICs≤12.5 μM). Spiroplasma cells were apparently not protected by the presence of spiralin on their surface. The activities of the six trichorzins PA were not influenced by their sequence variations and no synergistic effect was observed. Consistent with the marginal effect of cholesterol on the incorporation of the trichorzins PA into liposome bilayers, the antibiotic activity was independent of the amount of cholesterol in the membranes of the different mollicutes. The trichorzins PA and alamethicin inhibited the motility of Spiroplasma melliferum, the helical cells being deformed and split into coccoid forms. Membrane potential measurements in Acholeplasma laidlawii and S. melliferum showed that trichorzin PA V and alamethicin F50 very efficiently depolarized the plasma membrane of mollicutes. This was consistent with fluorescence and 23Na NMR measurements on liposomes that revealed the permeabilisation of the lipid bilayer and the nonselective ionophoric activity of the trichorzins PA. These data suggest that the bactericidal activity exhibited by the trichorzins PA on mollicutes is due to the permeabilisation of the plasma membrane

    Dark gas in the solar neighnorhood from extinction data

    Full text link
    When modeling infrared or gamma-ray data as a linear combination of observed gas tracers, excess emission has been detected compared to expectations from known neutral and atomic gas as traced by HI and CO measurements, respectively. This excess might correspond to an additional gas component. This so-called "dark gas" (DG) has been observed in our Galaxy, as well as the Magellanic Clouds. For the first time, we investigate the correlation between visible extinction (Av) data and gas tracers on large scales in the solar neighborhood. Our work focuses on both the solar neighborhood (|b|>10\degr), and the inner and outer Galaxy, as well as on four individual regions: Taurus, Orion, Cepheus-Polaris and Aquila-Ophiuchus. Thanks to the recent production of an all-sky Av map, we first perform the correlation between Av and both HI and CO emission over the most diffuse regions, to derive the optimal (Av/NH)^(ref) ratio. We then iterate the analysis over the entire regions to estimate the CO-to-H2 conversion factor as well as the DG mass fraction. The average extinction to gas column-density ratio in the solar neighborhood is found to be (Av/NH)^(ref)=6.53 10^(-22) mag. cm^2, with significant differences between the inner and outer Galaxy. We derive an average XCO value of 1.67 10^(20) H2 cm^(-2)/(K km s^(-1)). In the solar neighborhood, the gas mass in the dark component is found to be 19% relative to that in the atomic component and 164% relative to the one traced by CO. These results are compatible with the recent analysis using Planck data within the uncertainties of our measurements. We estimate the ratio of dark gas to total molecular gas to be 0.62 in the solar neighborhood. The HI-to-H2 and H2-to-CO transitions appear for Av \simeq0.2 mag and Av1.5\simeq1.5 mag, respectively, in agreement with theoretical models of dark-H2 gas.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in A&A (in press

    Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against β-lactam antibiotics

    Get PDF
    In absence of β-lactam antibiotics, BlaI and MecI homodimeric repressors negatively control the expression of genes involved in β-lactam resistance in Bacillus licheniformis and in Staphylococcus aureus. Subsequently to β-lactam presence, BlaI/MecI is inactivated by a single-point proteolysis that separates its N-terminal DNA-binding domain to its C-terminal domain responsible for its dimerization. Concomitantly to this proteolysis, the truncated repressor acquires a low affinity for its DNA target that explains the expression of the structural gene for resistance. To understand the loss of the high DNA affinity of the truncated repressor, we have determined the different dissociation constants of the system and solved the solution structure of the B. licheniformis monomeric repressor complexed to the semi-operating sequence OP1 of blaP (1/2OP1blaP) by using a de novo docking approach based on inter-molecular nuclear Overhauser effects and chemical-shift differences measured on each macromolecular partner. Although the N-terminal domain of the repressor is not subject to internal structural rearrangements upon DNA binding, the molecules adopt a tertiary conformation different from the crystallographic operator–repressor dimer complex, leading to a 30° rotation of the monomer with respect to a central axis extended across the DNA

    Physical Properties and Galactic Distribution of Molecular Clouds identified in the Galactic Ring Survey

    Full text link
    We derive the physical properties of 580 molecular clouds based on their 12CO and 13CO line emission detected in the University of Massachusetts-Stony Brook (UMSB) and Galactic Ring surveys. We provide a range of values of the physical properties of molecular clouds, and find a power-law correlation between their radii and masses, suggesting that the fractal dimension of the ISM is around 2.36. This relation, M = (228 +/- 18) R^{2.36+/-0.04}, allows us to derive masses for an additional 170 GRS molecular clouds not covered by the UMSB survey. We derive the Galactic surface mass density of molecular gas and examine its spatial variations throughout the Galaxy. We find that the azimuthally averaged Galactic surface density of molecular gas peaks between Galactocentric radii of 4 and 5 kpc. Although the Perseus arm is not detected in molecular gas, the Galactic surface density of molecular gas is enhanced along the positions of the Scutum-Crux and Sagittarius arms. This may indicate that molecular clouds form in spiral arms and are disrupted in the inter-arm space. Last, we find that the CO excitation temperature of molecular clouds decreases away from the Galactic center, suggesting a possible decline in the star formation rate with Galactocentric radius. There is a marginally significant enhancement in the CO excitation temperature of molecular clouds at a Galactocentric radius of about 6 kpc, which in the longitude range of the GRS corresponds to the Sagittarius arm. This temperature increase could be associated with massive star formation in the Sagittarius spiral arm

    Collaborative Exploration of 3D Scientific Data

    Get PDF
    International audienceThis demonstration introduces new ways for exploring Collaborative Virtual Environments (CVE) that contain 3D scientific data sets obtained by simulation. In order to make decisions accordingly to their collective knowledge and understanding of the simulation, the users must collaborate and share experiences and comments. We provide tools to enable a good coordination between the users, and to make each user aware of the activity of others. Each user can navigate within the CVE: change her own position, orientation and scale. Each user can also add annotations within the virtual universe. We propose several 3D layouts for the presentation of the data, associated with different 3D navigation tools. Consequently, the user can explore the data accoording to various parameters such as time or temperature. Last we propose a new 3D interaction tool, called 2D Cursor / 3D Pointer, dedicated to selection and manipulation of 3D objects, and application control. This 2D cursor is associated with a 3D geometry in order to make people aware of the activity of the users who are using this tool
    corecore