29,658 research outputs found
Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe
I develop a renormalization-group blocking framework for lattice QCD with
staggered fermions. Under plausible, and testable, assumptions, I then argue
that the fourth-root recipe used in numerical simulations is valid in the
continuum limit. The taste-symmetry violating terms, which give rise to
non-local effects in the fourth-root theory when the lattice spacing is
non-zero, vanish in the continuum limit. A key role is played by reweighted
theories that are local and renormalizable on the one hand, and that
approximate the fourth-root theory better and better as the continuum limit is
approached on the other hand.Comment: Minor corrections. Revtex, 58 page
Scalar Meson Spectroscopy with Lattice Staggered Fermions
With sufficiently light up and down quarks the isovector () and
isosinglet () scalar meson propagators are dominated at large distance by
two-meson states. In the staggered fermion formulation of lattice quantum
chromodynamics, taste-symmetry breaking causes a proliferation of two-meson
states that further complicates the analysis of these channels. Many of them
are unphysical artifacts of the lattice approximation. They are expected to
disappear in the continuum limit. The staggered-fermion fourth-root procedure
has its purported counterpart in rooted staggered chiral perturbation theory
(rSXPT). Fortunately, the rooted theory provides a strict framework that
permits the analysis of scalar meson correlators in terms of only a small
number of low energy couplings. Thus the analysis of the point-to-point scalar
meson correlators in this context gives a useful consistency check of the
fourth-root procedure and its proposed chiral realization. Through numerical
simulation we have measured correlators for both the and channels
in the ``Asqtad'' improved staggered fermion formulation in a lattice ensemble
with lattice spacing fm. We analyze those correlators in the context
of rSXPT and obtain values of the low energy chiral couplings that are
reasonably consistent with previous determinations.Comment: 23 pp., 3 figs., submitted to Phys. Rev.
Finite-volume two-pion energies and scattering in the quenched approximation
We investigate how L\"uscher's relation between the finite-volume energy of
two pions at rest and pion scattering lengths has to be modified in quenched
QCD. We find that this relation changes drastically, and in particular, that
``enhanced finite-volume corrections" of order and occur at
one loop ( is the linear size of the box), due to the special properties of
the in the quenched approximation. We define quenched pion scattering
lengths, and show that they are linearly divergent in the chiral limit. We
estimate the size of these various effects in some numerical examples, and find
that they can be substantial.Comment: 22 pages, uuencoded, compressed postscript fil
Applications of Partially Quenched Chiral Perturbation Theory
Partially quenched theories are theories in which the valence- and sea-quark
masses are different. In this paper we calculate the nonanalytic one-loop
corrections of some physical quantities: the chiral condensate, weak decay
constants, Goldstone boson masses, B_K and the K+ to pi+ pi0 decay amplitude,
using partially quenched chiral perturbation theory. Our results for weak decay
constants and masses agree with, and generalize, results of previous work by
Sharpe. We compare B_K and the K+ decay amplitude with their real-world values
in some examples. For the latter quantity, two other systematic effects that
plague lattice computations, namely, finite-volume effects and unphysical
values of the quark masses and pion external momenta are also considered. We
find that typical one-loop corrections can be substantial.Comment: 22 pages, TeX, refs. added, minor other changes, version to appear in
Phys. Rev.
Neon, sulphur and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre
Context: Spectra of planetary nebulae show numerous fine structure emission lines from ionic species, enabling us to study the overall abundances of the nebular material that is ejected into the interstellar medium. The abundances derived from planetary nebula emission show the presence of a metallicity gradient within the disk of the Milky Way up to Galactocentric distances of ∼ 10 kpc, which are consistent with findings from studies of different types of sources, including H II regions and young B-type stars. The radial dependence of these abundances further from the Galactic centre is in dispute.
Aims: We aim to derive the abundances of neon, sulphur and argon from a sample of planetary nebulae towards the Galactic anti- centre, which represent the abundances of the clouds from which they were formed, as they remain unchanged throughout the course of stellar evolution. We then aim to compare these values with similarly analysed data from elsewhere in the Milky Way in order to observe whether the abundance gradient continues in the outskirts of our Galaxy.
Methods: We have observed 23 planetary nebulae at Galactocentric distances of 8–21 kpc with Spitzer IRS. The abundances were calculated from infrared emission lines, for which we observed the main ionisation states of neon, sulphur, and argon, which are little affected by extinction and uncertainties in temperature measurements or fluctuations within the planetary nebula. We have complemented these observations with others from optical studies in the literature, in order to reduce or avoid the need for ionisation correction factors in abundance calculations.
Results: The overall abundances of our sample of planetary nebulae in the Galactic anti-centre are lower than those in the solar neighbourhood. The abundances of neon, sulphur, and argon from these stars are consistent with a metallicity gradient from the solar neighbourhood up to Galactocentric distances of ∼ 20 kpc, albeit with varying degrees of dispersion within the data
Enhanced chiral logarithms in partially quenched QCD
I discuss the properties of pions in ``partially quenched'' theories, i.e.
those in which the valence and sea quark masses, and , are
different. I point out that for lattice fermions which retain some chiral
symmetry on the lattice, e.g. staggered fermions, the leading order prediction
of the chiral expansion is that the mass of the pion depends only on , and
is independent of . This surprising result is shown to receive corrections
from loop effects which are of relative size , and which thus
diverge when the valence quark mass vanishes. Using partially quenched chiral
perturbation theory, I calculate the full one-loop correction to the mass and
decay constant of pions composed of two non-degenerate quarks, and suggest
various combinations for which the prediction is independent of the unknown
coefficients of the analytic terms in the chiral Lagrangian. These results can
also be tested with Wilson fermions if one uses a non-perturbative definition
of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected
(alpha_4 is replaced by alpha_4/2
A precise determination of T_c in QCD from scaling
Existing lattice data on the QCD phase transition are analyzed in
renormalized perturbation theory. In quenched QCD it is found that T_c scales
for lattices with only 3 time slices, and that T_c/Lambda_msbar=1.15 \pm 0.05.
A preliminary estimate in QCD with two flavours of dynamical quarks shows that
this ratio depends on the quark mass. For realistic quark masses we estimate
T_c/Lambda_msbar=0.49 \pm 0.02. We also investigate the equation of state in
quenched QCD at 1-loop order in renormalised perturbation theory.Comment: 7 pages, 5 eps figures; improved error analysis yields smaller errors
on T_
Chiral corrections to the axial charges of the octet baryons from quenched QCD
We calculate one-loop correction to the axial charges of the octet baryons
using quenched chiral perturbation theory, in order to understand chiral
behavior of the axial charges in quenched approximation to quantum
chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral
perturbation theory result, , we find
that the quenched chiral perturbation theory result,
, is
singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure
Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks
Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson
mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm
systematic})) in our quenched lattice QCD numerical calculation with staggered
quarks. The systematic error is mostly from finite-volume effect and the
finite-spacing effect is negligible. The flavor symmetry breaking in the pion
and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm)
0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare
quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in
hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex
- …