18 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Cognitive Performance Following Ingestion of Glucose–Fructose Sweeteners That Impart Different Postprandial Glycaemic Responses: A Randomised Control Trial

    No full text
    We aimed to investigate the isolated effect of glycaemia on cognitive test performance by using beverages sweetened with two different glucose–fructose disaccharides, sucrose and isomaltulose. In a randomised crossover design, 70 healthy adults received a low-glycaemic-index (GI) isomaltulose and sucralose beverage (GI 32) and a high-GI sucrose beverage (GI 65) on two occasions that were separated by two weeks. Following beverage ingestion, declarative memory and immediate word recall were examined at 30, 80 and 130 min. At 140 min, executive function was tested. To confirm that the glycaemic response of the test beverages matched published GI estimates, a subsample (n = 12) of the cognitive testing population (n = 70) underwent glycaemic response testing on different test days. A significantly lower value of mean (95% CI) blood glucose concentration incremental area under the curve (iAUC) was found for isomaltulose, in comparison to the blood glucose concentration iAUC value for sucrose, the difference corresponding to −44 mmol/L∙min (−70, −18), p = 0.003. The mean (95% CI) difference in numbers of correct answers or words recalled between beverages at 30, 80 and 130 min were 0.1 (−0.2, 0.5), −0.3 (−0.8, 0.2) and 0.0 (−0.5, 0.5) for declarative memory, and −0.5 (−1.4, 0.3), 0.4 (−0.4, 1.3) and −0.4 (−1.1, 0.4) for immediate free word recall. At 140 min, the mean difference in the trail-making test between beverages was −0.3 sec (−6.9, 6.3). None of these differences were statistically or clinically significant. In summary, cognitive performance was unaffected by different glycaemic responses to beverages during the postprandial period of 140 min

    A Molecular Strategy to Lock‐in the Conformation of a Perylene Bisimide‐Derived Supramolecular Polymer

    No full text
    Locking‐in the conformation of supramolecular assemblies provides a new avenue to regulate the (opto)electronic properties of robust nanoscale objects. In the present contribution, we show that the covalent tethering of a perylene bisimide (PBI)‐derived supramolecular polymer with a molecular locker enables the formation of a locked superstructure equipped with emergent structure–function relationships. Experiments that exploit variable‐temperature ground‐state electronic absorption spectroscopy unambiguously demonstrate that the excitonic coupling between nearest neighboring units in the tethered superstructure is preserved at a temperature (371 K) where the pristine, non‐covalent assembly exists exclusively in a molecularly dissolved state. A close examination of the solid‐state morphologies reveals that the locked superstructure engenders the formation of hierarchical 1D materials which are not achievable by unlocked assemblies. To complement these structural attributes, we further demonstrate that covalently tethering a supramolecular polymer built from PBI subunits enables the emergence of electronic properties not evidenced in non‐covalent assemblies. Using cyclic voltammetry experiments, the elucidation of the potentiometric properties of the locked superstructure reveals a 100‐mV stabilization of the conduction band energy when compared to that recorded for the non‐covalent assembly. Locking‐in the conformation of supramolecular polymers delivers a new class of robust, π‐conjugated nanoscale objects. Spectroscopic and electrochemical measurements elucidate the unique optoelectronic properties of these semiconducting superstructures
    corecore