71 research outputs found
A Speech Recognizer based on Multiclass SVMs with HMM-Guided Segmentation
Automatic Speech Recognition (ASR) is essentially a problem of pattern
classification, however, the time dimension of the speech signal has
prevented to pose ASR as a simple static classification problem. Support
Vector Machine (SVM) classifiers could provide an appropriate solution,
since they are very well adapted to high-dimensional classification problems.
Nevertheless, the use of SVMs for ASR is by no means straightforward,
mainly because SVM classifiers require an input of fixed-dimension.
In this paper we study the use of a HMM-based segmentation as a mean to
get the fixed-dimension input vectors required by SVMs, in a problem of
isolated-digit recognition. Different configurations for all the parameters
involved have been tested. Also, we deal with the problem of multi-class
classification (as SVMs are initially binary classifers), studying two of the
most popular approaches: 1-vs-all and 1-vs-1
Canines as a measuring tool for leaf tent construction in Dermanura watsoni
Many animals are capable of constructing structures to modify the environment for their own benefit. The design of these structures requires animals to perceive dimensions. However, how animals take measurements to achieve the final design of the structures they construct is known for only very few species. In the Neotropics, a few bat species build roosts or leaf tents that serve different purposes. Thomas’s fruit-eating bat (Dermanura watsoni) constructs tents that have complex designs, when compared to other tent building bats. The bifid tent is a design built by producing a long, J-shaped cut on each side of understory plant leaves. We expect that to accomplish this complex design bats would require precise measurements during tent construction. We measured several bat morphological traits to infer which of them, if any, was used by the bats as a measuring device. Dermanura watsoni uses the distance between their lower canines to increase the perpendicular distance of the J-cut to the central vein of the leaf along the J-cut. The bat adds the distance between the canines to each subsequent secondary vein cut. This is the first study to infer which body part D. watsoni most likely uses as a measuring tool. Our results provide new insight into the evolution of body parts as measuring devices during tent construction in related and unrelated tent-building bat species.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí
Using Biotic Interaction Networks for Prediction in Biodiversity and Emerging Diseases
Networks offer a powerful tool for understanding and visualizing inter-species ecological and evolutionary interactions. Previously considered examples, such as trophic networks, are just representations of experimentally observed direct interactions. However, species interactions are so rich and complex it is not feasible to directly observe more than a small fraction. In this paper, using data mining techniques, we show how potential interactions can be inferred from geographic data, rather than by direct observation. An important application area for this methodology is that of emerging diseases, where, often, little is known about inter-species interactions, such as between vectors and reservoirs. Here, we show how using geographic data, biotic interaction networks that model statistical dependencies between species distributions can be used to infer and understand inter-species interactions. Furthermore, we show how such networks can be used to build prediction models. For example, for predicting the most important reservoirs of a disease, or the degree of disease risk associated with a geographical area. We illustrate the general methodology by considering an important emerging disease - Leishmaniasis. This data mining methodology allows for the use of geographic data to construct inferential biotic interaction networks which can then be used to build prediction models with a wide range of applications in ecology, biodiversity and emerging diseases
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios
Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector’s ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys’ ENM and human exposure to vectors of Leishmaniases
Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens
BACKGROUND: Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). PRINCIPAL FINDINGS: In this investigation we present evidence for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L. monocytogenes and B. abortus. Further analysis shows that Trx80 activation prevents the escape of GFP-tagged L. monocytogenes into the cytosol, and induces accumulation of the bacteria within the lysosomes. Inhibition of the lysosomal activity by chloroquine treatment resulted in higher replication of bacteria in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. SIGNIFICANCE: Our results show that Trx80 potentiates the bactericidal activities of professional phagocytes, and contributes to the first line of defense against intracellular bacteria
Ecosystem services provided by bromeliad plants: A systematic review.
The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems
- …