22 research outputs found

    Self-Protection of Massive Cosmological Gravitons

    Full text link
    Relevant deformations of gravity present an exciting window of opportunity to probe the rigidity of gravity on cosmological scales. For a single-graviton theory, the leading relevant deformation constitutes a graviton mass term. In this paper, we investigate the classical and quantum stability of massive cosmological gravitons on generic Friedman backgrounds. For a Universe expanding towards a de Sitter epoch, we find that massive cosmological gravitons are self-protected against unitarity violations by a strong coupling phenomenon.Comment: 1+11 pages, v2: references adde

    Consistency of Relevant Cosmological Deformations on all Scales

    Full text link
    Using cosmological perturbation theory we show that the most relevant defor- mation of gravity is consistent at the linear level. In particular, we prove the absence of uni- tarity violating negative norm states in the weak coupling regime from sub- to super-Hubble scales. This demonstrates that the recently proposed classical self-protection mechanism of deformed gravity extends to the entire kinematical domain.Comment: 22 pages, 4 figure

    Massive Gravity on Curved Background

    Full text link
    We investigate generally covariant theories which admit a Fierz-Pauli mass term for metric perturbations around an arbitrary curved background. For this we restore the general covariance of the Fierz-Pauli mass term by introducing four scalar fields which preserve a certain internal symmetry in their configuration space. It is then apparent that for each given spacetime metric this construction corresponds to a completely different generally covariant massive gravity theory with different symmetries. The proposed approach is verified by explicit analysis of the physical degrees of freedom of massive graviton on de Sitter space.Comment: Version accepted for publication; 17 page

    Modeling of shared space with multi-modal traffic using a multi-layer social force approach

    Get PDF
    In the field of traffic road design, the shared space approach aims to develop roads from mere traffic infrastructures to public spaces, compelling higher interaction between road users. In this paper we develop the fundamentals for a micro-simulation tool based on the Social Force Model, to represent the motion of road users in such layouts. Working with the observed behavior of users in a pedestrian-friendly intersection in the city of Braunschweig (D), a multi-layer structured model is developed, in which each layer is designated to handle different situations, from free-flow movements to user interactions in crowded situations. Visibility graphs and clothoid estimations are used for designing trajectories of road users for the free flow movement. Furthermore, an enhancement of the classical Social Force Model is provided in order to model long-range collision avoidance behavior. Finally, the enhanced simulation framework is validated by two observed scenarios, which include various conflicts between pedestrians and cars.DFG/BE 2159/13-1DFG/FR 1670/13-

    Ultra-High Energy Probes of Classicalization

    Full text link
    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupation number of order 10^4.Comment: 23 pages, late

    A multi-layer social force approach to model interactions in shared spaces using collision prediction

    Get PDF
    In shared space environments the movements of road users is not regulated by traffic rules, but is the result of spontaneous interaction between traffic users, who negotiate the priority according to social rules such as eye contact or courtesy behavior. However, appropriate micro simulation tools, which can reproduce the operation of shared spaces, are currently lacking. In this paper, a multi-layer approach for representing the movement of road users and their interaction, based on the Social Force Model, is developed. In a free-flow layer a realistic path is calculated for each user towards his destination, while a conflict layer is used for detecting possible conflict situations and computing an appropriate reaction. The novelty of this work in the field of shared space modeling is in the implementation of group dynamics and a SFM based approach for cyclists. The presented approach is qualitatively tested in different traffic situations involving cyclists, pedestrians and pedestrian groups, and shows realistic behavior. © 2017 The Authors. Published by Elsevier B.V.DFG/BE 2159/13-1DFG/FR 1670/13-

    Cosmological perturbations in Massive Gravity and the Higuchi bound

    Full text link
    In de Sitter spacetime there exists an absolute minimum for the mass of a spin-2 field set by the Higuchi bound m^2 \geq 2H^2. We generalize this bound to arbitrary spatially flat FRW geometries in the context of the recently proposed ghost-free models of Massive Gravity with an FRW reference metric, by performing a Hamiltonian analysis for cosmological perturbations. We find that the bound generically indicates that spatially flat FRW solutions in FRW massive gravity, which exhibit a Vainshtein mechanism in the background as required by consistency with observations, imply that the helicity zero mode is a ghost. In contradistinction to previous works, the tension between the Higuchi bound and the Vainshtein mechanism is equally strong regardless of the equation of state for matter.Comment: 24 pages, typos and conventions correcte

    Huygens' Principle for the Klein-Gordon equation in the de Sitter spacetime

    Full text link
    In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass mm of the scalar field and the dimension n≥2n\geq 2 of the spatial variable are tied by the equation m2=(n2−1)/4m^2=(n^2-1)/4 . Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveal that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n=1,3n=1,3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m=0 and m2=(n2−1)/4m^2=(n^2-1)/4 ), which obey incomplete Huygens' principle, is equivalent to the condition n=3n=3 (in fact, the spatial dimension of the physical world). For n=3n=3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m2=(n2−1)/4m^2=(n^2-1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time. Keywords: Huygens' Principle; Klein-Gordon Equation; de Sitter spacetime; Higuchi Boun

    Classicalization of Gravitons and Goldstones

    Get PDF
    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role of entropy in it, as it illustrates, that much more prosaic scalar theories essentially do the same. Finally, it illustrates that in both cases classicalization is the defining property for unitarization, and that it sets-in before one can talk about accompanying properties, such as entropy and thermality of static classicalons (black holes). These properties are by-products of classicalization, and their equivalents can be defined for non-gravitational cases of classicalization.Comment: 23 page
    corecore