11 research outputs found

    Dairy Intake and Acne Vulgaris:A Systematic Review and Meta-Analysis of 78,529 Children, Adolescents, and Young Adults

    Get PDF
    A meta-analysis can help inform the debate about the epidemiological evidence on dairy intake and development of acne. A systematic literature search of PubMed from inception to 11 December 2017 was performed to estimate the association of dairy intake and acne in children, adolescents, and young adults in observational studies. We estimated the pooled random effects odds ratio (OR) (95% CI), heterogeneity (I2-statistics, Q-statistics), and publication bias. We included 14 studies (n = 78,529; 23,046 acne-cases/55,483 controls) aged 7–30 years. ORs for acne were 1.25 (95% CI: 1.15–1.36; p = 6.13 × 10−8) for any dairy, 1.22 (1.08–1.38; p = 1.62 × 10−3) for full-fat dairy, 1.28 (1.13–1.44; p = 8.23 × 10−5) for any milk, 1.22 (1.06–1.41; p = 6.66 × 10−3) for whole milk, 1.32 (1.16–1.52; p = 4.33 × 10−5) for low-fat/skim milk, 1.22 (1.00–1.50; p = 5.21 × 10−2) for cheese, and 1.36 (1.05–1.77; p = 2.21 × 10−2) for yogurt compared to no intake. ORs per frequency of any milk intake were 1.24 (0.95–1.62) by 2–6 glasses per week, 1.41 (1.05–1.90) by 1 glass per day, and 1.43 (1.09–1.88) by ≥2 glasses per day compared to intake less than weekly. Adjusted results were attenuated and compared unadjusted. There was publication bias (p = 4.71 × 10−3), and heterogeneity in the meta-analyses were explained by dairy and study characteristics. In conclusion, any dairy, such as milk, yogurt, and cheese, was associated with an increased OR for acne in individuals aged 7–30 years. However, results should be interpreted with caution due to heterogeneity and bias across studies

    Lactase Persistence, Milk Intake, and Adult Acne: A Mendelian Randomization Study of 20,416 Danish Adults

    Get PDF
    Whether there is a causal relationship between milk intake and acne is unknown. We tested the hypothesis that genetically determined milk intake is associated with acne in adults using a Mendelian randomization design. LCT-13910 C/T (rs4988235) is associated with lactase persistence (TT/TC) in Northern Europeans. We investigated the association between milk intake, LCT-13910 C/T (rs4988235), and acne in 20,416 adults (age-range: 20–96) from The Danish General Suburban Population Study (GESUS). The adjusted observational odds ratio for acne in any milk intake vs. no milk intake was 0.93(95% confidence interval: 0.48–1.78) in females and 0.49(0.22–1.08) in males aged 20–39 years, and 1.15(95% confidence interval: 0.66–1.99) in females and 1.02(0.61–1.72) in males above 40 years. The unadjusted odds ratio for acne in TT+TC vs. CC was 0.84(0.43–1.62) in the age group 20–39 years, and 0.99(0.52–1.88) above 40 years. We did not find any observational or genetic association between milk intake and acne in our population of adults

    Dairy Intake and Body Composition and Cardiometabolic Traits among Adults: Mendelian Randomization Analysis of 182041 Individuals from 18 Studies.

    No full text
    BACKGROUND: Associations between dairy intake and body composition and cardiometabolic traits have been inconsistently observed in epidemiological studies, and the causal relationship remains ill-defined. METHODS: We performed Mendelian randomization analysis using an established genetic variant located upstream of the lactase gene (LCT-13910 C/T, rs4988235) associated with dairy intake as an instrumental variable (IV). The causal effects of dairy intake on body composition and cardiometabolic traits (lipids, glycemic traits, and inflammatory factors) were quantified by IV estimators among 182041 participants from 18 studies. RESULTS: Each 1 serving/day higher dairy intake was associated with higher lean mass [β (SE) = 0.117 kg (0.035); P = 0.001], higher hemoglobin A1c [0.009% (0.002); P < 0.001], lower LDL [-0.014 mmol/L (0.006); P = 0.013], total cholesterol (TC) [-0.012 mmol/L (0.005); P = 0.023], and non-HDL [-0.012 mmol/L (0.005); P = 0.028]. The LCT-13910 C/T CT + TT genotype was associated with 0.214 more dairy servings/day (SE = 0.047; P < 0.001), 0.284 cm higher waist circumference (SE = 0.118; P = 0.017), 0.112 kg higher lean mass (SE = 0.027; P = 3.8 × 10-5), 0.032 mmol/L lower LDL (SE = 0.009; P = 0.001), and 0.032 mmol/L lower TC (SE = 0.010; P = 0.001). Genetically higher dairy intake was associated with increased lean mass [0.523 kg per serving/day (0.170); P = 0.002] after correction for multiple testing (0.05/18). However, we find that genetically higher dairy intake was not associated with lipids and glycemic traits. CONCLUSIONS: The present study provides evidence to support a potential causal effect of higher dairy intake on increased lean mass among adults. Our findings suggest that the observational associations of dairy intake with lipids and glycemic traits may be the result of confounding

    Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study

    No full text
    OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P&lt;0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials
    corecore