143 research outputs found
Relation-algebraic modeling and solution of chessboard independence and domination problems
AbstractWe describe a simple computing technique for solving independence and domination problems on rectangular chessboards. It rests upon relational modeling and uses the BDD-based specific purpose computer algebra system RelView for the evaluation of the relation-algebraic expressions that specify the problemsâ solutions and the visualization of the computed results. The technique described in the paper is very flexible and especially appropriate for experimentation. It can easily be applied to other chessboard problems
Solving Hard Control Problems in Voting Systems via Integer Programming
Voting problems are central in the area of social choice. In this article, we
investigate various voting systems and types of control of elections. We
present integer linear programming (ILP) formulations for a wide range of
NP-hard control problems. Our ILP formulations are flexible in the sense that
they can work with an arbitrary number of candidates and voters. Using the
off-the-shelf solver Cplex, we show that our approaches can manipulate
elections with a large number of voters and candidates efficiently
A Relation-algebraic Approach to Simple Games
Simple games are a powerful tool to analyze decision-making and coalition formation in social and political life. In this paper, we present relation-algebraic models of simple games and develop relational algorithms for solving some basic problems of them. In particular, we test certain fundamental properties of simple games (being monotone, proper, respectively strong) and compute speciďŹc players (dummies, dictators, vetoers, null players) and coalitions (minimal winning coalitions and vulnerable winning coalitions). We also apply relation-algebra to determine central and dominant players, swingers and power indices (the Banzhaf, Holler-Packel and Deegan-Packel indices). This leads to relation-algebraic speciďŹcations, which can be executed with the help of the BDD-based tool RelView after a simple translation into the tool's programming language. In order to demonstrate the visualization facilities of RelView we consider an example of the Catalonian Parliament after the 2003 election.relation algebra; RelView; simple game; winning coalition; swinger; dominant player; central player; power index
Computations on Simple Games using RelView
Simple games are a powerful tool to analyze decision-making and coalition formation in social and political life. In this paper we present relational models of simple games and develop relational algorithms for solving some game-theoretic basic problems. The algorithms immediately can be transformed into the language of the Computer Algebra system RelView and, therefore, the system can be used to solve the problems and to visualize the results of the computations.relational algebra ; RelView ; simple games
An Interdisciplinary Approach to Coalition Formation
A stable government is by deďŹnition not dominated by any other government. However, it may happen that all governments are dominated. In graph-theoretic terms this means that the dominance graph does not possess a source. In this paper we are able to deal with this case by a clever combination of notions from different ďŹelds, such as relational algebra, graph theory and social choice theory, and by using the computer support system RelView for computing solutions and visualizing the results. Using relational algorithms, in such a case we break all cycles in each initial strongly connected component by removing the vertices in an appropriate minimum feedback vertex set. In this way we can choose a government that is as close as possible to being un-dominated. To achieve unique solutions, we additionally apply the majority ranking recently introduced by Balinski and Laraki. The main parts of our procedure can be executed using the RelView tool. Its sophisticated implementation of relations allows to deal with graph sizes that are sufficient for practical applications of coalition formation.Graph theory; RelView; relational algebra; dominance; stable government
Applying relational algebra and RelView to measures in a social network
We present an application of relation algebra to measure agents' 'strength' in a social network with influence between agents. In particular, we deal with power, success, and influence of an agent as measured by the generalized Hoede-Bakker index and its modifications, and by the influence indices. We also apply relation algebra to determine followers of a coalition and the kernel of an influence function. This leads to specifications, which can be executed with the help of the BDD-based tool RelView after a simple translation into the tool's programming language. As an example we consider the present Dutch parliament.RelView; relation algebra; social network; Hoede-Bakker index; influence index
Applying relational algebra and RelView to coalition formation
We present an application of relational algebra to coalition formation. This leads to speciďŹcations, which can be executed with the help of the RelView tool after a simple translation into the tool's programming language. As an example we consider a simpliďŹcation of the situation in Poland after the 2001 elections.RelView; relational algebra; coalition formation; feasible government; dominance; stable government
- âŚ