4 research outputs found

    TALEN-Mediated Inactivation of PD-1 in Tumor-Reactive Lymphocytes Promotes Intratumoral T-cell Persistence and Rejection of Established Tumors

    No full text
    Despite the promising efficacy of adoptive cell therapies (ACT) in melanoma, complete response rates remain relatively low and outcomes in other cancers are less impressive. The immunosuppressive nature of the tumor microenvironment and the expression of immune-inhibitory ligands, such as PD-L1/CD274 by the tumor and stroma are considered key factors limiting efficacy. The addition of checkpoint inhibitors (CPI) to ACT protocols bypasses some mechanisms of immunosuppression, but associated toxicities remain a significant concern. To overcome PD-L1–mediated immunosuppression and reduce CPI-associated toxicities, we used TALEN technology to render tumor-reactive T cells resistant to PD-1 signaling. Here, we demonstrate that inactivation of the PD-1 gene in melanoma-reactive CD8+ T cells and in fibrosarcoma-reactive polyclonal T cells enhanced the persistence of PD-1 gene-modified T cells at the tumor site and increased tumor control. These results illustrate the feasibility and potency of approaches incorporating advanced gene-editing technologies into ACT protocols to silence immune checkpoints as a strategy to overcome locally active immune escape pathways

    TALEN-mediated genetic inactivation of the glucocorticoid receptor in cytomegalovirus-specific T cells

    No full text
    Key Points The GR gene can be inactivated in Streptamer-selected CMV-specific CD8+ T cells using TALEN. The GR gene inactivation endows T cells with resistance to the immunosuppressive effects of corticosteroids in vitro and in vivo.</jats:p
    corecore