24 research outputs found

    Transfer of lens-specific transcripts to retinal RNA samples may underlie observed changes in crystallin-gene transcript levels after ischemia

    Get PDF
    PURPOSE: Retinal ischemia appears to lead to alterations in retinal transcript levels of a group of genes known to be abundantly expressed in the lens. Our purpose is to study whether these alterations are truly the result of retinal ischemia or whether they could be caused by contamination of the retinal tissue with trace amounts of lens tissue. METHODS: Changes occurring in the retinal gene expression profile after induction of retinal ischemia were assessed by oligonucleotide microarrays and by real-time quantitative PCR. RESULTS: Microarray analysis of the retinal gene expression profile after 5 or 60 min ischemia showed altered transcript levels for a group of genes with functions related to "structural constituent of eye lens" (23 genes, predominantly crystallins). Subsequent qPCR assays for this set of genes showed extremely high variations in transcript levels between individual animals of both control and ischemia-treated groups. However, the relative transcript levels, or expression profile, of these genes was constant in all samples. The transcript levels of these genes were on average 2624-times higher in tissue samples isolated from the superficial layers of the total lens. Moreover, all 23 genes had high expression levels in lens compared to retina as was shown by microarray. CONCLUSIONS: From these data, it appears plausible that during isolation of the retina, trace amounts of lens tissue may end up in the studied retinal samples. This would explain the high level of variability in transcript levels of genes, the strong correlation of relative levels between samples, and the link with lens-specific function of the "altered" genes. Changes in crystallin gene expression in other models of retinal degeneration have been reported and a careful examination of the transcript level of other lens-specific genes is essential to rule out a possible confounding effect of lens-material transfe

    Multiplex ligation-dependent probe amplification (MLPA) enhances the molecular diagnosis of aniridia and related disorders

    Get PDF
    Mutations in the PAX6 gene have been implicated in aniridia, a congenital malformation of the eye with severe hypoplasia of the iris. However, not all aniridia cases can be explained by mutations in the PAX6 gene. The purpose of this study was to enhance the molecular diagnosis of aniridia using multiplex ligation-dependent probe amplification (MLPA). Total genomic DNA was isolated from peripheral blood of 70 unrelated probands affected with aniridia. Polymerase chain reaction (PCR) was performed followed by automated bidirectional sequencing. Additionally, MLPA was performed. We identified 24 different point mutations in the PAX6 gene in 34 patients after sequencing. In eight additional patients, we identified a deletion of one or more exons of the PAX6 gene or in the 3′ regulatory region of the PAX6 gene using MLPA. This work demonstrates the necessity to screen for larger deletions in the region of the PAX6 gene in addition to the sequencing of exons in the PAX6 gene. The mutation detection rate will increase from 49% to 60%. This shows that MLPA substantially enhances the molecular diagnosis of aniridia

    初発統合失調症および精神病ハイリスク者のガンマ帯域聴性定常反応の検討

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 齊藤 延人, 東京大学教授 山岨 達也, 東京大学講師 寺尾 安生, 東京大学教授 狩野 方伸, 東京大学講師 湯本 真人University of Tokyo(東京大学

    Identification of novel mutations in X-linked retinitis pigmentosa families and implications for diagnostic testing

    Get PDF
    Contains fulltext : 69886.pdf (publisher's version ) (Open Access)PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families

    Localization of a gene for partial epilepsy to chromosome 10q

    No full text
    There is strong evidence for a genetic contribution to epilepsy, but it is commonly assumed that this genetic contribution is limited to ‘generalized’ epilepsies, and that most forms of ‘partial’ epilepsy are nongenetic. In a linkage analysis of a single family containing 11 affected individuals, we obtained strong evidence for localization of a gene for partial epilepsy. This susceptibility gene maps to chromosome 10q, with a maximum two–point lod score for D10S192 of 3.99 at θ=0.0. All affected individuals share a single haplotype for seven tightly linked contiguous markers; the maximum lod score for this haplotype is 4.83 at θ=0.0. Key recombinants place the susceptibility locus within a 10 centimorgan interval

    A review of treatment modalities in gyrate atrophy of the choroid and retina (GACR)

    Get PDF
    Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. Methods: Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. Results: A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, L-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0–91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21–34%. Quality assessment showed low to moderate quality of the articles. Conclusions: Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort
    corecore