526 research outputs found

    Computational analysis of spliced leader trans-splicing in the regenerative flatworm <i>Macrostomum lignano</i> reveals its prevalence in conserved and stem cell related genes

    Get PDF
    In eukaryotes, trans-splicing is a process of nuclear pre-mRNA maturation where two different RNA molecules are joined together by the spliceosomal machinery utilizing mechanisms similar to cis-splicing. In diverse taxa of lower eukaryotes, spliced leader (SL) trans-splicing is the most frequent type of trans-splicing, when the same sequence derived from short small nuclear RNA molecules, called SL RNAs, is attached to the 5’ ends of different non-processed pre-mRNAs. One of the functions of SL trans-splicing is processing polycistronic pre-mRNA molecules transcribed from operons, when several genes are transcribed as one pre-mRNA molecule. However, only a fraction of trans-spliced genes reside in operons, suggesting that SL trans-splicing must also have some other, less understood functions. Regenerative flatworms are informative model organisms which hold the keys to understand the mechanism of stem cell regulation and specialization during regeneration and homeostasis. Their ability to regenerate is fueled by the division and differentiation of the adult somatic stem cell population called neoblasts. Macrostomum lignano is a flatworm model organism where substantial technological advances have been achieved in recent years, including the development of transgenesis. Although a large fraction of genes in M. lignano were estimated to be SL trans-spliced, SL trans-splicing was not studied in detail in M. lignano before. Here, we performed the first comprehensive study of SL trans-splicing in M. lignano. By reanalyzing the existing genome and transcriptome data of M. lignano, we estimate that 30 % of its genes are SL trans-spliced, 15 % are organized in operons, and almost 40 % are both SL trans-spliced and in operons. We annotated and characterized the sequence of SL RNA and characterized conserved cis- and SL transsplicing motifs. Finally, we found that a majority of SL trans-spliced genes are evolutionarily conserved and signif icantly over-represented in neoblast-specific genes. Our findings suggest an important role of SL trans-splicing in the regulation and maintenance of neoblasts in M. lignano

    Cloning and expression of new microRNAs from zebrafish

    Get PDF
    MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spatial expression patterns for 35 new miRNAs and for 32 known miRNAs in the zebrafish by whole mount in situ hybridization and northern blotting. Overall, 23 of the 35 new miRNAs and 30 of the 32 known miRNAs could be detected. We found that most miRNAs were expressed during later stages of development. Some were expressed ubiquitously, but many of the miRNAs were expressed in a tissue-specific manner. Most newly discovered miRNAs have low expression levels and are less conserved in other vertebrate species. Our cloning and expression analysis indicates that most abundant and conserved miRNAs in zebrafish are now known

    Transcriptional signatures of somatic neoblasts and germline cells in <i>Macrostomum lignano</i>

    Get PDF
    The regeneration-capable flatworm <i>Macrostomum lignano</i> is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as <i>Schmidtea mediterranea</i>. However, information on the transcriptome and markers of stem cells in <i>M. lignano</i> is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of <i>M. lignano</i>, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including <i>Mlig-ddx39</i>, <i>Mlig-rrm1</i>, <i>Mlig-rpa3</i>, <i>Mlig-cdk1</i>, and <i>Mlig-h2a</i>, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated <i>M. lignano</i> transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in <i>M. lignano</i>

    Neuronal Activity Regulates Hippocampal miRNA Expression

    Get PDF
    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control

    Large-Scale Identification of Mirtrons in Arabidopsis and Rice

    Get PDF
    A new catalog of microRNA (miRNA) species called mirtrons has been discovered in animals recently, which originate from spliced introns of the gene transcripts. However, only one putative mirtron, osa-MIR1429, has been identified in rice (Oryza sativa). We employed a high-throughput sequencing (HTS) data- and structure-based approach to do a genome-wide search for the mirtron candidate in both Arabidopsis (Arabidopsis thaliana) and rice. Five and eighteen candidates were discovered in the two plants respectively. To investigate their biological roles, the targets of these mirtrons were predicted and validated based on degradome sequencing data. The result indicates that the mirtrons could guide target cleavages to exert their regulatory roles post-transcriptionally, which needs further experimental validation

    <i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging

    Get PDF
    Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a &lt;i&gt;C-elegans&lt;/i&gt; model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders

    miROrtho: computational survey of microRNA genes

    Get PDF
    MicroRNAs (miRNAs) are short, non-protein coding RNAs that direct the widespread phenomenon of post-transcriptional regulation of metazoan genes. The mature ∼22-nt long RNA molecules are processed from genome-encoded stem-loop structured precursor genes. Hundreds of such genes have been experimentally validated in vertebrate genomes, yet their discovery remains challenging, and substantially higher numbers have been estimated. The miROrtho database (http://cegg.unige.ch/mirortho) presents the results of a comprehensive computational survey of miRNA gene candidates across the majority of sequenced metazoan genomes. We designed and applied a three-tier analysis pipeline: (i) an SVM-based ab initio screen for potent hairpins, plus homologs of known miRNAs, (ii) an orthology delineation procedure and (iii) an SVM-based classifier of the ortholog multiple sequence alignments. The web interface provides direct access to putative miRNA annotations, ortholog multiple alignments, RNA secondary structure conservation, and sequence data. The miROrtho data are conceptually complementary to the miRBase catalog of experimentally verified miRNA sequences, providing a consistent comparative genomics perspective as well as identifying many novel miRNA genes with strong evolutionary support

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Selenoprotein dio2 is a regulator of mitochondrial function, morphology and uprmt in human cardiomyocytes

    Get PDF
    Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes
    corecore