193 research outputs found

    Inleiding Themanummer: De publieke onderwijstaak van het hoger beroepsonderwijs

    Get PDF
    Een vrije en veerkrachtige samenleving ontstaat niet vanzelf en blijft niet vanzelf bestaan. In dit themanummer verkennen we de publieke onderwijstaak van het hoger beroepsonderwijs om studenten te onderwijzen de gemeenschappelijke wereld én het publieke gesprek over die wereld centraal te stellen. Met dit themanummer willen wij iets tegenover het vigerende marktdenken zetten. We laten ons hierbij inspireren door het gedachtegoed van Hannah Arendt (1906–1975). Ze heeft uitgebreid geschreven over ‘het publieke’. Ze verbindt de inzet van wetenschappelijke kennis en technologie met het politieke vraagstuk: willen we daadwerkelijk leven in de wereld die we aan het scheppen zijn? Arendts gedachtegoed biedt volop handvatten om op verschillende niveaus van het hoger beroepsonderwijs deze taak te doordenken en invulling te geven

    Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    Get PDF
    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus

    Human 13N-ammonia PET studies: the importance of measuring 13N-ammonia metabolites in blood

    Get PDF
    Dynamic 13N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic modeling of metabolic pathways, using arterial blood 13N-ammonia as input function. Rosenspire et al. (1990) introduced a solid phase extraction procedure for fractionation of 13N-content in blood into 13N-ammonia, 13N-urea, 13N-glutamine and 13N-glutamate. Due to a radioactive half-life for 13N of 10 min, the procedure is not suitable for blood samples taken beyond 5–7 min after tracer injection. By modifying Rosenspire’s method, we established a method enabling analysis of up to 10 blood samples in the course of 30 min. The modified procedure was validated by HPLC and by 30-min reproducibility studies in humans examined by duplicate 13N-ammonia injections with a 60-min interval. Blood data from a 13N-ammonia brain PET study (from Keiding et al. 2006) showed: (1) time courses of 13N-ammonia fractions could be described adequately by double exponential functions; (2) metabolic conversion of 13N-ammonia to 13N-metabolites were in the order: healthy subjects > cirrhotic patients without HE > cirrhotic patients with HE; (3) kinetics of initial tracer distribution in tissue can be assessed by using total 13N-concentration in blood as input function, whereas assessment of metabolic processes requires 13N-ammonia measurements

    Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    Get PDF
    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia

    Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD

    Altered stress responses in adults born by Caesarean section

    Get PDF
    peer-reviewedBirth by Caesarean-section (C-section), which increases the risk for metabolic and immune disorders, disrupts the normal initial microbial colonisation of the gut, in addition to preventing early priming of the stress and immune-systems.. Animal studies have shown there are enduring psychological processes in C-section born mice. However, the long-term impact of microbiota-gut-brain axis disruptions due to birth by C-section on psychological processes in humans is unknown. Forty age matched healthy young male university students born vaginally and 36 C-section delivered male students were recruited. Participants underwent an acute stressor, the Trier social stress test (TSST), during a term-time study visit. A subset of participants also completed a study visit during the university exam period, representing a naturalistic stressor. Participants completed a battery of cognitive tests and self-report measures assessing mood, anxiety, and perceived stress. Saliva, blood, and stool samples were collected for analysis of cortisol, peripheral immune profile, and the gut microbiota. Young adults born by C-section exhibit increased psychological vulnerability to acute stress and a prolonged period of exam-related stress. They did not exhibit an altered salivary cortisol awakening response to the TSST, but their measures of positive affect were significantly lower than controls throughout the procedure. Both C-section and vaginally-delivered participants performed equally well on cognitive assessments. Most of the initial effects of delivery mode on the gut microbiome did not persist into adulthood as the gut microbiota profile showed modest changes in composition in adult vaginally-delivered and C-sectioned delivered subjects. From an immune perspective, concentrations of IL-1β and 1L-10 were higher in C-section participants. These data confirm that there is a potential enduring effect of delivery mode on the psychological responses to acute stress during early adulthood. The mental health implications of these observations require further study regarding policies on C-section use

    Deep Brain Stimulation of Nucleus Accumbens Region in Alcoholism Affects Reward Processing

    Get PDF
    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H2[15O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control

    R-Allyl Nickel(II) Complexes with Chelating N-Heterocyclic Carbenes: Synthesis, Structural Characterization, and Catalytic Activity

    Get PDF
    The N-heterocyclic carbene (NHC) nickel complexes [(L)Ni(NHC)][BArF4] (ArF = 3,5-bis(trifluoromethyl)- phenyl; L = allyl (1), methylallyl (2); NHC = 1-(2-picolyl)-3-methylimidazol-2-ylidene (a), 1-(2-picolyl)-3-isopropylimidazol-2-ylidene (b), 1-(2-picolyl)-3-n-butylimidazol-2-ylidene (c), 1-(2-picolyl)-3-phenylimidazol-2-ylidene (d), 1-(2-picolyl)-3- methylbenzoimidazol-2-ylidene (e), 1-(2-picolyl)-4,5-dichloro-3-methylimidazol-2-ylidene (f)) have been obtained in high yields and characterized by NMR spectroscopy. Furthermore, 1d was unambiguously characterized by single-crystal X-ray crystallography. Complexes 1a−f/2a−f have shown catalytic activity toward dimerization and hydrosilylation of styrenes. In particular, 1a proved to be the most efficient catalyst in the dimerization of styrene derivatives in the absence of cocatalyst. Also, complexes 1a,d showed high selectivity and moderate to good yields in hydrosilylation reactions
    corecore