317 research outputs found
Adiabatic invariance with first integrals of motion
The construction of a microthermodynamic formalism for isolated systems based
on the concept of adiabatic invariance is an old but seldom appreciated effort
in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33,
225 (1910)]. An apparently independent extension of such formalism for systems
bearing additional first integrals of motion was recently proposed by Hans H.
Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic
invariance even in such singular cases. After some remarks in connection with
the formalism pioneered by Hertz, it will be suggested that such an extension
can incidentally explain the success of a dynamical method for computing the
entropy of classical interacting fluids, at least in some potential
applications where the presence of additional first integrals cannot be
ignored.Comment: 2 pages, no figures (REVTeX 4
Flareâgenerated shock evolution and geomagnetic storms during the âHalloween 2003 epochâ: 29 October to 2 November
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95151/1/jgra17876.pd
Relationship between solar energetic oxygen flux and MHD shock Mach number
This study correlates the time-intensity profile of a magnetohydrodynamic (MHD) shock with the corresponding solar energetic oxygen for a coronal mass ejection (CME) event that occurred on October 28, 2003. The intensity of MHD shock, in terms of Mach number, is simulated using a 1.5D MHD code, whereas the solar energetic oxygen flux is observed by the Solar Isotope Spectrometer (SIS) on board the Advanced Composition Explorer (ACE) spacecraft. A good correlation (Pearson correlation coefficient: r = 0.70 â 0.84) is found between the forward fast-mode shock Mach number and the hourly-averaged, logarithmic oxygen differential energy flux for 7 energy channels (7.3 â 63.8 MeV). We suspect that the intensity-time profile of high energy SEP events is manifested by the strength (Mach number) of CME-driven propagation shocks. While further studies with more events are required to be more conclusive, this study result provides a direction for future studies or predictions of SEP fluxes
A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications
International audienceInterplanetary magnetic clouds (MCs) have been identified for the first 8.6 years of the WIND mission, and their magnetic field structures have been parameter-fitted by a static, force free, cylindrically-symmetric model (Lepping et al., 1990) with various levels of success. This paper summarizes various aspects of the results of the model fitting by providing: seven estimated model fit-parameter values for each of the 82 MCs found, their objectively determined quality estimates, closest approach vectors (in two coordinate frames), fit-parameter errors for the cases of acceptable quality (50 cases, or 61%), axial magnetic fluxes, axial current densities, and total axial current - as well as some examples of MC profiles for various conditions and "categories" for each case (e.g. Bz: N?S or S?N, etc.). MC quality is estimated from a quantitative consideration of a large set of parameters, such as the chi-squared of the model fit, degree of asymmetry of the B profile, and a comparison of two means of estimating radius. This set of MCs was initially identified by visual inspection of relevant field and plasma data. Each resulting MC candidate is then tested through the use of the MC parameter model, for various adjusted durations to determine the best fit, which helps to refine the boundary-times. The resulting MC set is called Set 1. Another, larger, set (Set 2) of MCs is identified through an automated program whose criteria are based on general MC plasma and field characteristics at 1AU determined through past experience. Set 1 is almost fully contained within Set 2, whose frequency of occurrence better matches that of the sunspot cycle than Set 1. The difference-set (Set 2-Set 1) is referred to as the magnetic cloud-like (MCL) set, whose members do not very well represent good flux ropes through modeling. We present a discussion of how a MC's front boundary is specifically identified in terms of multi-parameter considerations (i.e. any one or more of: increase in B, directional discontinuity, magnetic hole in B, drop in proton plasma beta, B-fluctuation level change, proton temperature drop, etc.), as well as through the application of the flux rope model. Also presented are examples of unusual MCs, as well as some commonly occurring relationships, such as the existence and frequency (approx. 1/2 the time) of upstream interplanetary shocks, and less frequent internal shocks
Thermodynamics of adiabatic feedback control
We study adaptive control of classical ergodic Hamiltonian systems, where the
controlling parameter varies slowly in time and is influenced by system's state
(feedback). An effective adiabatic description is obtained for slow variables
of the system. A general limit on the feedback induced negative entropy
production is uncovered. It relates the quickest negentropy production to
fluctuations of the control Hamiltonian. The method deals efficiently with the
entropy-information trade off.Comment: 6 pages, 1 figur
Mixture of Fluids involving Entropy Gradients and Acceleration Waves in Interfacial Layers
Through an Hamiltonian action we write down the system of equations of
motions for a mixture of thermocapillary fluids under the assumption that the
internal energy is a function not only of the gradient of the densities but
also of the gradient of the entropies of each component. A Lagrangian
associated with the kinetic energy and the internal energy allows to obtain the
equations of momentum for each component and for the barycentric motion of the
mixture. We obtain also the balance of energy and we prove that the equations
are compatible with the second law of thermodynamics. Though the system is of
parabolic type, we prove that there exist two tangential acceleration waves
that characterize the interfacial motion. The dependence of the internal energy
of the entropy gradients is mandatory for the existence of this kind of waves.
The differential system is non-linear but the waves propagate without
distortion due to the fact that they are linearly degenerate (exceptional
waves).Comment: 30 page
Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU) signatures
International audienceThe extreme ultraviolet (EUV) signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP) inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs) occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Ha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs) and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster lift-off, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures ? the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts ? of a driven shock were identified in half of the 12 events. The in situ (1 AU) analyses using five different solar wind ejecta signatures and comparisons with the bidirectional flow of suprathermal particles and Forbush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than ~ 30° E or ~ 35° W with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal velocity of the shock and the ejecta leading-edge. These shocks were weak to moderate in strength, and a comparison of their transit time with their local speed indicated a deceleration. In contradistinction with this result on shocks, the transit time versus the local speed of the ejecta appeared either to indicate that the ejecta as a whole traveled at constant speed or underwent a small amount of acceleration. This is a result that stands for cases with and without fast stream observations at their rear end. Seven out of twelve ejecta candidate intervals were themselves interplanetary magnetic cloud (IMC) or contained a previously identified IMC. As a by-product of this study, we noticed two good ejecta candidates at 1 AU for which observation of a H-CME or CME appears to be missing
Fluctuation-dissipation relationship in chaotic dynamics
We consider a general N-degree-of-freedom dissipative system which admits of
chaotic behaviour. Based on a Fokker-Planck description associated with the
dynamics we establish that the drift and the diffusion coefficients can be
related through a set of stochastic parameters which characterize the steady
state of the dynamical system in a way similar to fluctuation-dissipation
relation in non-equilibrium statistical mechanics. The proposed relationship is
verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure
- âŠ