319 research outputs found

    Sequence Diversity within the Capsular Genes of Streptococcus pneumoniae Serogroup 6 and 19

    Get PDF
    The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background, as determined by multi locus sequence typing (MLST) and multiple- locus variable number of tandem repeat analysis (MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity

    Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies

    Get PDF
    Bordetella pertussis attachment to host cells is a crucial step in colonization. In this study, we investigated the specificity of antibodies, induced either by vaccination or infection, capable of reducing bacterial adherence to respiratory epithelial cells. Both sera and purified anti-B. pertussis IgG or IgA fractions efficiently reduced attachment. This effect was found to be mediated mainly by fimbriae-specific antibodies. Antibodies with other specificities did not significantly interfere in the interaction of B. pertussis with respiratory epithelial cells, with the exception of antifilamentous hemaglutinin antibodies, which reduced bacterial attachment. However, this effect was smaller in magnitude than that observed in the presence of fimbriae-specific antibodies. The strong agglutinating activity of antifimbriae antibodies seems to be involved in this phenomenon.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Crucial role of antibodies to pertactin in Bordetella pertussis immunity

    Get PDF
    Pertussis, a serious infectious disease of the respiratory tract caused by Bordetella pertussis, is reemerging in vaccinated populations. Efforts to curtail this disease are hampered by limited insight into the basis of protective immunity. Opsonophagocytosis was recently found to play a central role in cellular bactericidal activity against B. pertussis. In the present study, we studied the specificity of opsonic antibodies. Anti-pertactin antibodies, but not anti-pertussis toxin, anti-fimbriae, or anti-filamentous hemagglutinin antibodies, were found to be crucial for B. pertussis phagocytosis. These data are consistent with field studies showing that levels of antibodies to pertactin correlate with protection.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Salivary antibody responses to 10-valent pneumococcal conjugate vaccination following two different immunization schedules in a healthy birth cohort

    Get PDF
    Pneumococcal conjugate vaccines reduce pneumococcal colonization via serotype-specific immunoglobulin G (IgG) at mucosal surfaces. The infant immunization schedule with the ten-valent pneumococcal conjugate vaccine (PCV10) changed from a 3 + 1 schedule (2–3-4–11 months) to a 2 + 1 schedule (2–4–11 months) in The Netherlands in 2013. We compared anti-pneumococcal IgG concentrations in saliva between the schedules. IgG was measured using a fluorescent bead-based multiplex immunoassay at the ages of 6 (post-primary) and 12 (post-booster) months in 51 infants receiving the 3 + 1 schedule and 68 infants receiving the 2 + 1 schedule. Post-primary IgG geometric mean concentrations (GMCs) were comparable between schedules for all vaccine serotypes. Post-booster IgG GMCs were significantly lower after the 2 + 1 schedule for serotypes 4 (p = 0.035), 7F (p = 0.048) and 23F (p = 0.0056). This study shows small differences in mucosal IgG responses between a 3 + 1 and a 2 + 1 PCV10 schedule. Future studies should establish correlates of protection against pneumococcal colonization for mucosal antibodies

    Crucial role of antibodies to pertactin in Bordetella pertussis immunity

    Get PDF
    Pertussis, a serious infectious disease of the respiratory tract caused by Bordetella pertussis, is reemerging in vaccinated populations. Efforts to curtail this disease are hampered by limited insight into the basis of protective immunity. Opsonophagocytosis was recently found to play a central role in cellular bactericidal activity against B. pertussis. In the present study, we studied the specificity of opsonic antibodies. Anti-pertactin antibodies, but not anti-pertussis toxin, anti-fimbriae, or anti-filamentous hemagglutinin antibodies, were found to be crucial for B. pertussis phagocytosis. These data are consistent with field studies showing that levels of antibodies to pertactin correlate with protection.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Газоносність вугільних пластів та фізико-механічнині властивості порід покрівлі і підошви поля шахти № 1 ”Тяглівська” Львівсько-Волинського басейну

    Get PDF
    Сопоставлены данные по изучению газоносности угольных пластов поля шахты № 1 ―Тягловская‖ и физико-механическим свойствам пород их непосредственной кровли и подошвы. Благоприятными яляются условия для выработки пластов b4, n8 в, n8. Несколько сложнее – для пластов n9, n7 в, n7 1, что вызвано низкой стойкостью пород кровли. Наиболее сложной прогнозируется ситуация для эксплуатации пласта n7 из-за низной стойкости и способности его кровли к обрушениям. Угольные пласты (кроме b4) находятся в метановой зоне. Их газоносность значительна, содержание метана в газовой смеси высокое. Это будет составлять дополнительные трудности при эксплуатации.Data on studies of the gas-bearing potential of coal seams of the Tyagliv-1 mine field are correlated as well as physical-mechanical properties of their immediate base and roof. Favorable conditions are known to exist for working of the seams b4, n8 в, n8. Somewhat more composite ones are observed for the seams n9, n7в, n7 1 that was caused by low stability of the roof rocks. The most composite situation is forecasted for exploitation of the seam n7 one to low stability and ability of its roof for landslides. Coal seams (exsepting b4) lie in the methane zone. Their gas-bearing potential is suffcient, methane content in a gas mixture is high. That will cause additional difficalties in the process of exploitation

    Pertussis toxin neutralizing antibody response after an acellular booster vaccination in Dutch and Finnish participants of different age groups

    Get PDF
    Pertussis incidence has increased in many countries and the disease occurs among all age groups, suggesting the need for booster immunizations through life. In addition to determining the concentration of anti-pertussis toxin (PT) antibodies, the ability of PT neutralizing antibodies (PTNAs) could be used to assess vaccine responses.Altogether 258 participants [7–10-year-old (N = 73), 11–15-year-old (N = 85), 20–35-year-old (N = 50) and 60–70-year-old (N = 50)] were included. Sera were collected before, one month, and one year after a single dose of a three pertussis component containing acellular pertussis vaccine. The adolescents were primed in childhood either by acellular or whole-cell vaccination. PTNA titres were determined by a Chinese hamster ovary cell assay and anti-PT IgG/IgA antibody concentrations by multiplex immunoassay.In all age groups, a significant increase in levels of PTNAs and anti-PT IgG was observed one month after vaccination and remained at least two-fold higher one year post-booster, in comparison to pre-booster. Young adults had the lowest response. The strongest increase in PTNAs was observed in participants who had ≥10 IU/mL concentration of anti-PT IgG antibodies pre-booster. At pre-booster, whole-cell-primed adolescents had higher PTNAs than acellular-primed peers (p = 0.047). One year post-booster, the Finnish whole-cell-primed adolescents had a higher level of PTNAs than acellular-primed adolescents (p = 0.049), however, this was not observed in Dutch adolescents. In conclusion, PTNAs increased after vaccination in all age groups, and the strongest increase was related to the presence of high pre-booster antibodies.</p

    Comparability of antibody response to a booster dose of 7-valent pneumococcal conjugate vaccine in infants primed with either 2 or 3 doses

    Get PDF
    In this cohort study we compared IgG antibody levels between infants immunized with 7-valent CRM197-conjugated pneumococcal vaccine (PCV-7) at 2,4 and 11 months and at 2, 3, 4 and 11 months of age,as measured by double adsorption ELISA. Pre- and post-booster levels following the 2 + 1 - and 3 + 1-dose schedule were comparable for 5 out of 7 serotypes except for serotypes 6B and 19F. The proportion of children reaching post-booster antibody thresholds were comparable except for 6B (>= 1.0 mu g/ml and >= 5.0 mu g/ml) and 19F (>= 5.0 mu g/ml). Surveillance studies are warranted for vaccine impact on 6B and 19F disease cases after reduced-dose PCV-7 schedules. (C) 2009 Elsevier Ltd. All rights reserved

    Serum IgA Responses against Pertussis Proteins in Infected and Dutch wP or aP Vaccinated Children: An Additional Role in Pertussis Diagnostics

    Get PDF
    BACKGROUND: Whooping cough is a respiratory disease caused by Bordetella pertussis, which induces mucosal IgA antibodies that appear to be relevant in protection. Serum IgA responses are measured after pertussis infection and might provide an additional role in pertussis diagnostics. However, the possible interfering role for pertussis vaccinations in the induction of serum IgA antibodies is largely unknown. METHODS/PRINCIPAL FINDINGS: We compared serum IgA responses in healthy vaccinated children between 1 and 10 years of age with those in children who despite vaccinations recently were infected with Bordetella pertussis. All children have been vaccinated at 2, 3, 4 and 11 months of age with either the Dutch whole-cell pertussis (wP) vaccine or an acellular pertussis (aP) vaccine and additionally received an aP booster vaccination at 4 years of age. Serum IgA responses to pertussis toxin (PT), filamentous heamagglutinin (FHA) and pertactin (Prn) were measured with a fluorescent multiplex bead-based immuno-assay. An ELISPOT-assay was used for the detection of IgA-memory B-cells specific to these antigens. Serum IgA levels to all pertussis vaccine antigens were significantly higher in infected children compared with healthy children. High correlations between anti-PT, anti-FHA or anti-Prn IgA and IgG levels were found in infected children and to some degree in wP primed children, but not at all in aP primed children. Highest numbers of IgA-pertussis-specific memory B-cells were observed after infection and generally comparable numbers were found after wP and aP vaccination. CONCLUSIONS: This study provides new insight in the diagnostic role for serum IgA responses against PT in vaccinated children. Since aP vaccines induce high serum IgG levels that interfere with pertussis diagnostics, serum IgA-PT levels will provide an additional diagnostic role. High levels of serum IgA for PT proved specific for recent pertussis infection with reasonable sensitivity, whereas the role for IgA levels against FHA and Prn in diagnosing pertussis remains controversial

    Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    Get PDF
    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. AIM: We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. METHODS: Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. RESULTS: Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. CONCLUSION: The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of this age group for future vaccine interventions in the context of population ageing
    corecore