104 research outputs found

    Tic20 forms a channel independent of Tic110 in chloroplasts

    Get PDF
    Background: The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. Results: We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. Conclusions: The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins

    Preserving cultural heritage: Analyzing the antifungal potential of ionic liquids tested in paper restoration

    Get PDF
    Early industrialization and the development of cheap production processes for paper have led to an exponential accumulation of paper-based documents during the last two centuries. Archives and libraries harbor vast amounts of ancient and modern documents and have to undertake extensive endeavors to protect them from abiotic and biotic deterioration. While services for mechanical preservation such as ex post de-acidification of historic documents are already commercially available, the possibilities for long-term protection of paper-based documents against fungal attack (apart from temperature and humidity control) are very limited. Novel processes for mechanical enhancement of damaged cellulosic documents use Ionic Liquids (IL) as essential process components. With some of these ILs having azolefunctionalities similar to well-known fungicides such as Clotrimazole, the possibility of antifungal activities of these ILs was proposed but has not yet been experimentally confirmed. We evaluated the potency of four ILs with potential application in paper restoration for suppression of fungal growth on five relevant paper-infesting molds. The results revealed a general antifungal activity of all ILs, which increased with the size of the non-polar group. Physiological experiments and ultimate elemental analysis allowed to determine the minimal inhibitory concentration of each IL as well as the residual IL concentration in process-treated paper. These results provide valuable guidelines for IL-applications in paper restoration processes with antifungal activity as an added benefit. With azoles remaining in the paper after the process, simultaneous repair and biotic protection in treated documents could be facilitated

    Trichoderma Species Differ in Their Volatile Profiles and in Antagonism Toward Ectomycorrhiza Laccaria bicolor

    Get PDF
    Fungi of the genus Trichoderma are economically important due to their plant growth- and performance-promoting effects, such as improved nutrient supply, mycoparasitism of plant-pathogens and priming of plant defense. Due to their mycotrophic lifestyle, however, they might also be antagonistic to other plant-beneficial fungi, such as mycorrhiza-forming species. Trichoderma spp. release a high diversity of volatile organic compounds (VOCs), which likely play a decisive role in the inter-species communication. It has been shown that Trichoderma VOCs can inhibit growth of some plant pathogens, but their inhibition potentials during early interactions with mutualistic fungi remain unknown. Laccaria bicolor is a common ectomycorrhizal fungus which in symbiotic relationship is well known to facilitate plant performance. Here, we investigated the VOC profiles of three strains of Trichoderma species, Trichoderma harzianum, Trichoderma Hamatum, and Trichoderma velutinum, as well as L. bicolor by stir bar sorptive extraction and gas chromatography – mass spectrometry (SBSE-GC-MS). We further examined the fungal performance and the VOC emission profiles during confrontation of the Trichoderma species with L. bicolor in different co-cultivation scenarios. The VOC profiles of the three Trichoderma species were highly species-dependent. T. harzianum was the strongest VOC emitter with the most diverse compound pattern, followed by T. hamatum and T. velutinum. Co-cultivation of Trichoderma spp. and L. bicolor altered the VOC emission patterns dramatically in some scenarios. The co-cultivations also revealed contact degree-dependent inhibition of one of the fungal partners. Trichoderma growth was at least partially inhibited when sharing the same headspace with L. bicolor. In direct contact between both mycelia, however, L. bicolor growth was impaired, indicating that Trichoderma and L. bicolor apply different effectors when defending their territory. Multivariate analysis demonstrated that all examined individual fungal species in axenic cultures, as well as their co-cultivations were characterized by a distinct VOC emission pattern. The results underline the importance of VOCs in fungal interactions and reveal unexpected adjustability of the VOC emissions according to the specific biotic environments

    Engineering <i>Saccharomyces cerevisiae</i> for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste

    Get PDF
    Pectin-rich agricultural byproducts are ideal feedstocks for biobased chemicals production. Here, the authors engineer the yeast, S. cerevisiae, in several steps to co-utilize d-galacturonic acid and d-glucose and demonstrate the potential of producing meso-galactaric acid from industrial orange peel

    Duration of adenosine-induced myocardial hyperemia - Insights from quantitative 13N-ammonia positron emission tomography myocardial perfusion imaging

    Get PDF
    AIMS To assess the impact of adenosine on quantitative myocardial blood flow (MBF) in a rapid stress-rest protocol compared to a rest-stress protocol using 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) and to gain insights into the time dependency of such effects. METHODS AND RESULTS Quantitative MBF at rest (rMBF), during adenosine-induced stress (sMBF) and myocardial flow reserve (MFR) were obtained from 331 retrospectively identified patients who underwent 13N-ammonia PET-MPI for suspected chronic coronary syndrome and who all exhibited no perfusion defects. Of these, 146 (44.1%) underwent a rapid stress-rest protocol with a time interval (Δtstress-rest) of 20 ± 4 minutes between adenosine infusion offset and rest-imaging, as per clinical routine. The remaining 185 (55.9%) patients underwent a rest-stress protocol and served as the reference. Groups did not differ regarding demographics, risk factors, medication, left ventricular function, and calcium scores. rMBF was significantly higher in the stress-rest vs. the rest-stress group (0.80 [IQR 0.66-1.00] vs. 0.70 [0.58-0.83] ml·min-1·g-1, p < 0.001) and, as sMBF was identical between groups (2.52 [2.20-2.96] vs. 2.50 [1.96-3.11], p = 0.347), MFR was significantly lower in the stress-rest group (3.07 [2.43-3.88] vs. 3.50 [2.63-4.10], p < 0.001). There was a weak correlation between Δtstress-rest and rMBF (r = -0.259, p = 0.002) and between Δtstress-rest and MFR (r = 0.163, p = 0.049), and the proportion of patients with abnormally high rMBF was significantly decreasing with increasing Δtstress-rest. CONCLUSIONS Intravenously applied adenosine induces a long-lasting hyperemic effect on the myocardium. Consequently, rapid stress-rest protocols could lead to an overestimation of rMBF and an underestimation of MFR

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue
    • 

    corecore