1,156 research outputs found

    Endometriosis-induced intussusception of the caecal appendix

    Get PDF
    Appendicular intussusception is an uncommon entity, with a reported incidence of 0.01%. The diagnosis is difficult and often only performed at the time of surgery. Intussusception has multiple causes including tumours, foreign bodies and polyps. The definitive treatment is surgical, and the extent of resection is determined by the underlying pathology and degree of invagination. Endometriosis is a rare cause of appendicular intussusception, with 194 cases described in the English literature. We report a case of a 42-year-old woman who presented with chronic abdominal pain in the lower right quadrant. A mass at the caecum was identified during investigations for renal stones by CT. Colonoscopy showed a polypoid lesion, with presumed origin in the appendix. Ileocaecal resection was performed because an appendicular tumour was suspected. Pathological examination identified endometriosis of the appendix and associated peritoneum with invagination of the caecum. The patient was discharged 7 days after surgery and is currently asymptomatic

    Braneworld inflation from an effective field theory after WMAP three-year data

    Get PDF
    In light of the results from the WMAP three-year sky survey, we study an inflationary model based on a single-field polynomial potential, with up to quartic terms in the inflaton field. Our analysis is performed in the context of the Randall-Sundrum II braneworld theory, and we consider both the high-energy and low-energy (i.e. the standard cosmology case) limits of the theory. We examine the parameter space of the model, which leads to both large-field and small-field inflationary type solutions. We conclude that small field inflation, for a potential with a negative mass square term, is in general favored by current bounds on the tensor-to-scalar perturbation ratio rs.Comment: 11 pages, 5 figures; references updated and a few comments added; final version to appear in Phys. Rev.

    Acoustic wall treatments for wind tunnel aeroacoustic measurements

    Get PDF
    Sound absorbing porous materials are used to line a wind tunnel wall, in order to reduce reflections. However, the lining can have a detrimental effect on the acoustic measurements due to an increase in the noise radiated from the walls. In addition, the aerodynamic fidelity of the tunnel can be affected. In the present study, the influence of the porous materials on the boundary layer aerodynamic characteristics is assessed. The consequent aerodynamic noise scattering is also studied, and compared against the acoustic benefit from absorbing reflections in the test section. Geometric modelling is used to understand the influence of varying absorbing materials in reducing the acoustic interference caused by the reflections. The aerodynamic and acoustic results are related to the roughness, and to the viscous and inertial resistivities of the three porous materials studied. The material with highest roughness (polyester wool) is found to result in the strongest turbulent fluctuations in the boundary layer. However, it is the material with the thickest fibre diameter (PU foam), and consequent highest inertial resistivity, which generates the strongest surface noise scattering. Materials with high viscous resistivity, together with low inertial resistivity, are found to provide good sound absorbing capabilities. The results therefore indicate that the best choice of sound absorbing wall treatment for wind tunnel applications results from minimizing roughness and inertial resistivity, while maximizing viscous resistivity

    Lattice Boltzmann very large eddy simulations of a turbulent flow over covered and uncovered cavities

    Get PDF
    Microphone measurements in a closed test section wind tunnel are affected by turbulent boundary layer (TBL) pressure fluctuations. These fluctuations are mitigated by placing the microphones at the bottom of cavities, usually covered with a thin, acoustically transparent material. Prior experiments showed that the cavity geometry affects the propagation of TBL pressure fluctuations toward the bottom. However, the relationship between the cavity geometry and the flowfield within the cavity is not well understood. Therefore, a very large-eddy simulation was performed using the lattice Boltzmann method. A cylindrical, a countersunk and a conical cavity are simulated with and without a fine wire-cloth cover, which is modeled as a porous medium governed by Darcy’s law. Adding a countersink to an uncovered cylindrical cavity is found to mitigate the transport of turbulent structures across the bottom by shifting the recirculation pattern away from the cavity bottom. Covering the cavities nearly eliminates this source of hydrodynamic pressure fluctuations. The eddies within the boundary layer, which convect over the cover, generate a primarily acoustic pressure field inside the cavities and thus suggesting that the pressure fluctuations within covered cavities can be modeled acoustically. As the cavity diameter increases compared to the eddies’ integral length scale, the amount of energy in the cut-off modes increases with respect to the cut-on modes. Since cut-off modes decay as they propagate into the cavity, more attenuation is seen. The results are in agreement with experimental evidenc

    Phase transition in Schwarzschild-de Sitter spacetime

    Full text link
    Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state(E.O.S) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally couplling this ratio is -1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<1/4\xi<{1/4} >. Therefore we derive a new constraint on the value of our coupling ξ\xi . These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde

    Instabilities in neutrino-plasma density waves

    Get PDF
    One examines the interaction and possible resonances between supernova neutrinos and electron plasma waves. The neutrino phase space distribution and its boundary regions are analyzed in detail. It is shown that the boundary regions are too wide to produce non-linear resonant effects. The growth or damping rates induced by neutrinos are always proportional to the neutrino flux and GF2G_{{\rm F}}^{2}.Comment: 9 pages, a few words modified to match PRD publicatio

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of ∼20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of ≲2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    Generalized Chaplygin gas model, supernovae and cosmic topology

    Full text link
    In this work we study to which extent the knowledge of spatial topology may place constraints on the parameters of the generalized Chaplygin gas (GCG) model for unification of dark energy and dark matter. By using both the Poincar\'e dodecahedral and binary octahedral spaces as the observable spatial topologies, we examine the current type Ia supernovae (SNe Ia) constraints on the GCG model parameters. We show that the knowledge of spatial topology does provide additional constraints on the AsA_s parameter of the GCG model but does not lift the degeneracy of the α\alpha parameter.Comment: Revtex 4, 8 pages, 10 figures, 1 table; version to match the published on
    • …
    corecore