1,156 research outputs found
Endometriosis-induced intussusception of the caecal appendix
Appendicular intussusception is an uncommon entity, with a reported incidence of 0.01%. The diagnosis is difficult and often only performed at the time of surgery. Intussusception has multiple causes including tumours, foreign bodies and polyps. The definitive treatment is surgical, and the extent of resection is determined by the underlying pathology and degree of invagination. Endometriosis is a rare cause of appendicular intussusception, with 194 cases described in the English literature. We report a case of a 42-year-old woman who presented with chronic abdominal pain in the lower right quadrant. A mass at the caecum was identified during investigations for renal stones by CT. Colonoscopy showed a polypoid lesion, with presumed origin in the appendix. Ileocaecal resection was performed because an appendicular tumour was suspected. Pathological examination identified endometriosis of the appendix and associated peritoneum with invagination of the caecum. The patient was discharged 7 days after surgery and is currently asymptomatic
Braneworld inflation from an effective field theory after WMAP three-year data
In light of the results from the WMAP three-year sky survey, we study an
inflationary model based on a single-field polynomial potential, with up to
quartic terms in the inflaton field. Our analysis is performed in the context
of the Randall-Sundrum II braneworld theory, and we consider both the
high-energy and low-energy (i.e. the standard cosmology case) limits of the
theory. We examine the parameter space of the model, which leads to both
large-field and small-field inflationary type solutions. We conclude that small
field inflation, for a potential with a negative mass square term, is in
general favored by current bounds on the tensor-to-scalar perturbation ratio
rs.Comment: 11 pages, 5 figures; references updated and a few comments added;
final version to appear in Phys. Rev.
Acoustic wall treatments for wind tunnel aeroacoustic measurements
Sound absorbing porous materials are used to line a wind tunnel wall, in order to reduce reflections. However, the lining can have a detrimental effect on the acoustic measurements due to an increase in the noise radiated from the walls. In addition, the aerodynamic fidelity of the tunnel can be affected. In the present study, the influence of the porous materials on the boundary layer aerodynamic characteristics is assessed. The consequent aerodynamic noise scattering is also studied, and compared against the acoustic benefit from absorbing reflections in the test section. Geometric modelling is used to understand the influence of varying absorbing materials in reducing the acoustic interference caused by the reflections. The aerodynamic and acoustic results are related to the roughness, and to the viscous and inertial resistivities of the three porous materials studied. The material with highest roughness (polyester wool) is found to result in the strongest turbulent fluctuations in the boundary layer. However, it is the material with the thickest fibre diameter (PU foam), and consequent highest inertial resistivity, which generates the strongest surface noise scattering. Materials with high viscous resistivity, together with low inertial resistivity, are found to provide good sound absorbing capabilities. The results therefore indicate that the best choice of sound absorbing wall treatment for wind tunnel applications results from minimizing roughness and inertial resistivity, while maximizing viscous resistivity
Lattice Boltzmann very large eddy simulations of a turbulent flow over covered and uncovered cavities
Microphone measurements in a closed test section wind tunnel are affected by turbulent boundary layer (TBL) pressure fluctuations. These
fluctuations are mitigated by placing the microphones at the bottom of cavities, usually covered with a thin, acoustically transparent material. Prior
experiments showed that the cavity geometry affects the propagation of TBL pressure fluctuations toward the bottom. However, the relationship
between the cavity geometry and the flowfield within the cavity is not well understood. Therefore, a very large-eddy simulation was performed using
the lattice Boltzmann method. A cylindrical, a countersunk and a conical cavity are simulated with and without a fine wire-cloth cover, which is
modeled as a porous medium governed by Darcy’s law. Adding a countersink to an uncovered cylindrical cavity is found to mitigate the transport of
turbulent structures across the bottom by shifting the recirculation pattern away from the cavity bottom. Covering the cavities nearly eliminates this
source of hydrodynamic pressure fluctuations. The eddies within the boundary layer, which convect over the cover, generate a primarily acoustic pressure field inside the cavities and thus suggesting that the pressure fluctuations within covered cavities can be modeled acoustically. As the cavity diameter increases compared to the eddies’ integral length scale, the amount of energy in the cut-off modes increases with respect to the cut-on modes.
Since cut-off modes decay as they propagate into the cavity, more attenuation is seen. The results are in agreement with experimental evidenc
Phase transition in Schwarzschild-de Sitter spacetime
Using a static massive spherically symmetric scalar field coupled to gravity
in the Schwarzschild-de Sitter (SdS) background, first we consider some
asymptotic solutions near horizon and their local equations of state(E.O.S) on
them. We show that near cosmological and event horizons our scalar field
behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild
horizons we obtain a coupling dependent pressure to energy density ratio. In
the case of a minimally couplling this ratio is -1 which springs to the mind
thermodynamical behavior of dark energy. If having a negative pressure behavior
near these horizons we concluded that the coupling constant must be
>. Therefore we derive a new constraint on the value of our coupling .
These two different behaviors of unique matter in the distinct regions of
spacetime at present era can be interpreted as a phase transition from dark
matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde
Instabilities in neutrino-plasma density waves
One examines the interaction and possible resonances between supernova
neutrinos and electron plasma waves. The neutrino phase space distribution and
its boundary regions are analyzed in detail. It is shown that the boundary
regions are too wide to produce non-linear resonant effects. The growth or
damping rates induced by neutrinos are always proportional to the neutrino flux
and .Comment: 9 pages, a few words modified to match PRD publicatio
The -cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering
We discuss a small-scale experiment, called -cleus, for the first
detection of coherent neutrino-nucleus scattering by probing nuclear-recoil
energies down to the 10 eV-regime. The detector consists of low-threshold
CaWO and AlO calorimeter arrays with a total mass of about 10 g and
several cryogenic veto detectors operated at millikelvin temperatures.
Realizing a fiducial volume and a multi-element target, the detector enables
active discrimination of , neutron and surface backgrounds. A first
prototype AlO device, operated above ground in a setup without
shielding, has achieved an energy threshold of eV and further
improvements are in reach. A sensitivity study for the detection of coherent
neutrino scattering at nuclear power plants shows a unique discovery potential
(5) within a measuring time of weeks. Furthermore, a site
at a thermal research reactor and the use of a radioactive neutrino source are
investigated. With this technology, real-time monitoring of nuclear power
plants is feasible.Comment: 14 pages, 19 figure
Generalized Chaplygin gas model, supernovae and cosmic topology
In this work we study to which extent the knowledge of spatial topology may
place constraints on the parameters of the generalized Chaplygin gas (GCG)
model for unification of dark energy and dark matter. By using both the
Poincar\'e dodecahedral and binary octahedral spaces as the observable spatial
topologies, we examine the current type Ia supernovae (SNe Ia) constraints on
the GCG model parameters. We show that the knowledge of spatial topology does
provide additional constraints on the parameter of the GCG model but does
not lift the degeneracy of the parameter.Comment: Revtex 4, 8 pages, 10 figures, 1 table; version to match the
published on
- …