8,049 research outputs found

    Methods development for total organic carbon accountability

    Get PDF
    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds

    Regional Hydrothermal Alteration of the Leadville Limestone (Mississippian) of Central Colorado

    Get PDF
    Massive metallic-sulfide deposits were implaced in the Leadville Limestone {Mississippian) of Central Colorado less than 70 million years ago. The thermal fluids which precipitated ore at Gilman, Colorado have regionally altered the Leadville Limestone. The sequence of alteration began with the recrystallization of limestone to a dark medium~grained dolomite containing a homogeneous distribution of Fe. This Was followed by partial recrystallization of the medium-grained dolomite to coarse-clear dolomite which contains an inhomogeneous distribution of Fe. The resulting banded rock is known as zebra rock . Precipitation of Si0 2 (jasperoid) occurred next. The jaspe=oid formed prior to the deposition of sulfides (O\u27Neil, 1951) which is the final event of the hydrothermal epoch. The alteration sequence is essentially the same everywhere. The one exception is the presence of ferroan-calcite in localities outside the Leadville-Gilman hydrothermal aureole. This calcite was deposited prior to the formation of the homogen· eous ferroan-dolomite. Regional alteration of sediment by thermal fluids is herein proposed as a fundamental diagenetic process. This process may be the s.ource of ferroan-carbonate cement which. fills fractures and vugs in numerous sedimentary sequences

    Mechanisms of fragmentation of Al-W granular composites under dynamic loading

    Full text link
    Numerical simulations of Aluminum (Al) and Tungsten (W) granular composite rings under various dynamic loading conditions caused by explosive loading were examined. Three competing mechanisms of fragmentation were observed: a continuum level mechanism generating large macrocracks described by the Grady-Kipp fragmentation mechanism, a mesoscale mechanism generating voids and microcracks near the initially unbonded Al/W interfaces due to tensile strains, and a mesoscale jetting due to the development of large velocity gradients between the W particles and adjacent Al. These mesoscale mechanisms can be used to tailor the size of the fragments by selecting an appropriate initial mesostructure for a given loading condition.Comment: 10 pages, 3 figures, submitted to AP

    Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator

    Full text link
    We realize controlled cavity-mediated photon transfer between two single nanoparticles over a distance of several tens of micrometers. First, we show how a single nanoscopic emitter attached to a near-field probe can be coupled to high-Q whispering-gallery modes of a silica microsphere at will. Then we demonstrate transfer of energy between this and a second nanoparticle deposited on the sphere surface. We estimate the photon transfer efficiency to be about six orders of magnitude higher than that via free space propagation at comparable separations.Comment: accepted for publication in Nano Letter

    Driver Accelerator Design for the 10 kW Upgrade of the Jefferson Lab IR FEL

    Full text link
    An upgrade of the Jefferson Lab IR FEL is now under construction. It will provide 10 kW output light power in a wavelength range of 2-10 microns. The FEL will be driven by a modest-sized 80-210 MeV, 10 mA energy-recovering superconducting RF (SRF) linac. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. These are imposed by the need for both transverse and longitudinal phase space management, the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and interactions between the FEL and the accelerator RF system. This report addresses these issues and presents an accelerator design solution meeting the requirements imposed by physical phenomena and operational necessities.Comment: submission THC03 for LINAC200

    Ab initio description of nonlinear dynamics of coupled microdisk resonators with application to self-trapping dynamics

    Get PDF
    Ab initio approach is used to describe the time evolution of the amplitudes of whispering gallery modes in a system of coupled microdisk resonators with Kerr nonlinearity. It is shown that this system demonstrates a transition between Josephson-like nonlinear oscillations and self-trapping behavior. Manifestation of this transition in the dynamics of radiative losses is studied.Comment: 10 pages, 5 figures, accepted for publication in Phys. Rev.

    Measurement of the 0.511 MeV gamma ray line from the Galactic Center

    Get PDF
    The detection of the 0.511 MeV electron positron annihilation line coming from the Galactic Center to provide the means to estimate the rate of positron production and to test some theoretical sources of positrons is addressed. The results of the measurements of the 0.511 MeV line flux made with a gamma ray experiment on board a stratospheric balloon are presented. The detector field of view looked at the galactic longitude range -31 deg l(II) +41 deg. The observed flux is 0.0067 (+ or - 0.0005) photons 1/cm(2)5 which is in very good agreement with the expected flux when assuming that the Galactic Center is a line source emitting uniformly

    A New Method for Calculating Arrival Distribution of Ultra-High Energy Cosmic Rays above 10^19 eV with Modifications by the Galactic Magnetic Field

    Full text link
    We present a new method for calculating arrival distribution of UHECRs including modifications by the galactic magnetic field. We perform numerical simulations of UHE anti-protons, which are injected isotropically at the earth, in the Galaxy and record the directions of velocities at the earth and outside the Galaxy for all of the trajectories. We then select some of them so that the resultant mapping of the velocity directions outside the Galaxy of the selected trajectories corresponds to a given source location scenario, applying Liouville's theorem. We also consider energy loss processes of UHE protons in the intergalactic space. Applying this method to our source location scenario which is adopted in our recent study and can explain the AGASA observation above 4 \times 10^{19} eV, we calculate the arrival distribution of UHECRs including lower energy (E>10^19 eV) ones. We find that our source model can reproduce the large-scale isotropy and the small-scale anisotropy on UHECR arrival distribution above 10^19 eV observed by the AGASA. We also demonstrate the UHECR arrival distribution above 10^19 eV with the event number expected by future experiments in the next few years. The interesting feature of the resultant arrival distribution is the arrangement of the clustered events in the order of their energies, reflecting the directions of the galactic magnetic field. This is also pointed out by Alvarez-Muniz et al.(2002). This feature will allow us to obtain some kind of information about the composition of UHECRs and the magnetic field with increasing amount of data.Comment: 10 pages, 8 figures, to appear in the Astrophysical Journa

    Bosons in a Lattice: Exciton-Phonon Condensate in Cu2O

    Full text link
    We explore a nonlinear field model to describe the interplay between the ability of excitons to be Bose-condensed and their interaction with other modes of a crystal. We apply our consideration to the long-living para-excitons in Cu2O. Taking into account the exciton-phonon interaction and introducing a coherent phonon part of the moving condensate, we derive the dynamic equations for the exciton-phonon condensate. These equations can support localized solutions, and we discuss the conditions for the moving inhomogeneous condensate to appear in the crystal. We calculate the condensate wave function and energy, and a collective excitation spectrum in the semiclassical approximation; the inside-excitations were found to follow the asymptotic behavior of the macroscopic wave function exactly. The stability conditions of the moving condensate are analyzed by use of Landau arguments, and Landau critical parameters appear in the theory. Finally, we apply our model to describe the recently observed interference and strong nonlinear interaction between two coherent exciton-phonon packets in Cu2O.Comment: 34 pages, LaTeX, four figures (.ps) are incorporated by epsf. Submitted to Phys. Rev.
    • …
    corecore