28 research outputs found

    Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke

    No full text
    Levels of angiotensin converting enzyme 2 (ACE2), a cardio and neuro-protective carboxypeptidase, are dynamically altered after stroke in preclinical models. We sought to characterize the previously unexplored changes in serum ACE2 activity of stroke patients and the mechanism of these changes. Serum samples were obtained from patients during acute ischemic stroke (n=39), conditions mimicking stroke (stroke-alert, n=23), or from control participants (n=20). Enzyme activity levels were analyzed by fluorometric assay and correlated with clinical variables by regression analyses. Serum ACE2 activity was significantly lower in acute ischemic stroke as compared to both control and stroke-alert patients, followed by an increase to control levels at three days. Serum ACE2 activity significantly correlated with the presence of ischemic stroke after controlling for other factors (P=0.01). Additional associations with ACE2 activity included a positive correlation with systolic blood pressure at presentation in stroke-alert (R(2)=0.24, P=0.03), while stroke levels showed no correlation (R(2)=0.01, P=0.50). ACE2 sheddase activity was unchanged between groups. These dynamic changes in serum ACE2 activity in stroke, which concur with preclinical studies, are not likely to be driven primarily by acute changes in blood pressure or sheddase activity. These findings provide new insight for developing therapies targeting this protective system in ischemic stroke

    A Novel Preclinical Murine Model to Monitor Inflammatory Breast Cancer Tumor Growth and Lymphovascular Invasion

    No full text
    Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0–140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models

    Protective Effects of the Angiotensin II At 2 Receptor Agonist Compound 21 in Ischemic Stroke: A Nose-To-Brain Delivery Approach

    No full text
    Significant neuroprotective effects of angiotensin II type 2 (AT 2 ) receptor (AT 2 receptor) agonists in ischemic stroke have been previously demonstrated in multiple studies. However, the routes of agonist application used in these pre-clinical studies, direct intracerebroventricular (ICV) and systemic administration, are unsuitable for translation into humans; in the latter case because AT 2 receptor agonists are blood-brain barrier (BBB) impermeable. To circumvent this problem, in the current study we utilized the nose-to-brain (N2B) route of administration to bypass the BBB and deliver the selective AT 2 receptor agonist Compound 21 (C21) to nÀive rats or rats that had undergone endothelin 1 (ET-1)-induced ischemic stroke. The results obtained from the present study indicated that C21 applied N2B entered the cerebral cortex and striatum within 30 min in amounts that are therapeutically relevant (8.4-9 nM), regardless of whether BBB was intact or disintegrated. C21 was first applied N2B at 1.5 h after stroke indeed provided neuroprotection, as evidenced by a highly significant, 57% reduction in cerebral infarct size and significant improvements in Bederson and Garcia neurological scores. N2B-administered C21 did not affect blood pressure or heart rate. Thus, these data provide proof-of-principle for the idea that N2B application of an AT 2 receptor agonist can exert neuroprotective actions when administered following ischemic stroke. Since N2B delivery of other agents has been shown to be effective in certain human central nervous system diseases, the N2B application of AT 2 receptor agonists may become a viable mode of delivering these neuroprotective agents for human ischemic stroke patients
    corecore