20,034 research outputs found
Characterization of the Catalytically Active Mn(II)-loaded \u3cem\u3eargE\u3c/em\u3e-encoded \u3cem\u3eN\u3c/em\u3e-acetyl-L-ornithine Deacetylase from \u3cem\u3eEscherichia coli\u3c/em\u3e
The catalytically competent Mn(II)-loaded form of the argE-encoded N-acetyl-l-ornithine deacetylase from Escherichia coli (ArgE) was characterized by kinetic, thermodynamic, and spectroscopic methods. Maximum N-acetyl-l-ornithine (NAO) hydrolytic activity was observed in the presence of one Mn(II) ion with k cat and K m values of 550 s−1 and 0.8 mM, respectively, providing a catalytic efficiency (k cat/K m) of 6.9 × 105 M−1 s−1. The ArgE dissociation constant (K d) for Mn(II) was determined to be 0.18 μM, correlating well with a value obtained by isothermal titration calorimetry of 0.30 μM for the first metal binding event and 5.3 μM for the second. An Arrhenius plot of the NAO hydrolysis for Mn(II)-loaded ArgE was linear from 15 to 55 °C, suggesting the rate-limiting step does not change as a function of temperature over this range. The activation energy, determined from the slope of this plot, was 50.3 kJ mol−1. Other thermodynamic parameters were ΔG ‡ = 58.1 kJ mol−1, ΔH ‡ = 47.7 kJ mol−1, and ΔS ‡ = –34.5 J mol−1 K−1. Similarly, plots of lnK m versus 1/T were linear, suggesting substrate binding is controlled by a single step. The natural product, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]leucine (bestatin), was found to be a competitive inhibitor of ArgE with a K i value of 67 μM. Electron paramagnetic resonance (EPR) data recorded for both [Mn(II)_(ArgE)] and [Mn(II)Mn(II)(ArgE)] indicate that the two Mn(II) ions form a dinuclear site. Moreover, the EPR spectrum of [Mn(II)Mn(II)(ArgE)] in the presence of bestatin indicates that bestatin binds to ArgE but does not form a µ-alkoxide bridge between the two metal ions
When only two thirds of the entanglement can be distilled
We provide an example of distillable bipartite mixed state such that, even in
the asymptotic limit, more pure-state entanglement is required to create it
than can be distilled from it. Thus, we show that the irreversibility in the
processes of formation and distillation of bipartite states, recently proved in
[G. Vidal, J.I. Cirac, Phys. Rev. Lett. 86, (2001) 5803-5806], is not limited
to bound-entangled states.Comment: 4 pages, revtex, 1 figur
\u3cem\u3eargE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Acetyl-l-Ornithine Deacetylase from \u3cem\u3eEscherichia coli\u3c/em\u3e Contains a Dinuclear Metalloactive Site
The catalytic and structural properties of the argE-encoded N-acetyl-l-ornithine deacetylase (ArgE) from Escherichia coli were investigated. On the basis of kinetic and ITC (isothermal titration calorimetry) data, Zn(II) binds to ArgE with Kd values that differ by ∼20 times. Moreover, ArgE exhibits ∼90% of its full catalytic activity upon addition of one metal ion. Therefore, ArgE behaves similarly to the aminopeptidase from Aeromonas proteolytica (AAP) in that one metal ion is the catalytic metal ion while the second likely plays a structural role. The N-acetyl-l-ornithine (NAO) deacetylase activity of ArgE showed a linear temperature dependence from 20 to 45 °C, indicating that the rate-limiting step does not change over this temperature range. The activation energy for NAO hydrolysis by ArgE was 25.6 kJ/mol when loaded with Zn(II) and 34.3 kJ/mol when loaded with Co(II). Electronic absorption and EPR (electron paramagnetic resonance) spectra of [Co·(ArgE)] and [CoCo(ArgE)] indicate that both divalent metal binding sites are five coordinate. In addition, EPR data show clear evidence of spin−spin coupling between the Co(II) ions in the active site but only after addition of a second equivalent of Co(II). Combination of these data provides the first physical evidence that the ArgE from E. coli contains a dinuclear Zn(II) active site, similar to AAP and the carboxypeptidase G2 from Pseudomonas sp. strain RS-16 (CPG2)
Factoring in a Dissipative Quantum Computer
We describe an array of quantum gates implementing Shor's algorithm for prime
factorization in a quantum computer. The array includes a circuit for modular
exponentiation with several subcomponents (such as controlled multipliers,
adders, etc) which are described in terms of elementary Toffoli gates. We
present a simple analysis of the impact of losses and decoherence on the
performance of this quantum factoring circuit. For that purpose, we simulate a
quantum computer which is running the program to factor N = 15 while
interacting with a dissipative environment. As a consequence of this
interaction randomly selected qubits may spontaneously decay. Using the results
of our numerical simulations we analyze the efficiency of some simple error
correction techniques.Comment: plain tex, 18 pages, 8 postscript figure
Schumacher's quantum data compression as a quantum computation
An explicit algorithm for performing Schumacher's noiseless compression of
quantum bits is given. This algorithm is based on a combinatorial expression
for a particular bijection among binary strings. The algorithm, which adheres
to the rules of reversible programming, is expressed in a high-level pseudocode
language. It is implemented using two- and three-bit primitive
reversible operations, where is the length of the qubit strings to be
compressed. Also, the algorithm makes use of auxiliary qubits; however,
space-saving techniques based on those proposed by Bennett are developed which
reduce this workspace to while increasing the running time by
less than a factor of two.Comment: 37 pages, no figure
The Parity Bit in Quantum Cryptography
An -bit string is encoded as a sequence of non-orthogonal quantum states.
The parity bit of that -bit string is described by one of two density
matrices, and , both in a Hilbert space of
dimension . In order to derive the parity bit the receiver must
distinguish between the two density matrices, e.g., in terms of optimal mutual
information. In this paper we find the measurement which provides the optimal
mutual information about the parity bit and calculate that information. We
prove that this information decreases exponentially with the length of the
string in the case where the single bit states are almost fully overlapping. We
believe this result will be useful in proving the ultimate security of quantum
crytography in the presence of noise.Comment: 19 pages, RevTe
Quantum Correlation Bounds for Quantum Information Experiments Optimization: the Wigner Inequality Case
Violation of modified Wigner inequality by means binary bipartite quantum
system allows the discrimination between the quantum world and the classical
local-realistic one, and also ensures the security of Ekert-like quantum key
distribution protocol. In this paper we study both theoretically and
experimentally the bounds of quantum correlation associated to the modified
Wigner's inequality finding the optimal experimental configuration for its
maximal violation. We also extend this analysis to the implementation of
Ekert's protocol
Squashing Models for Optical Measurements in Quantum Communication
Measurements with photodetectors necessarily need to be described in the
infinite dimensional Fock space of one or several modes. For some measurements
a model has been postulated which describes the full mode measurement as a
composition of a mapping (squashing) of the signal into a small dimensional
Hilbert space followed by a specified target measurement. We present a
formalism to investigate whether a given measurement pair of mode and target
measurements can be connected by a squashing model. We show that the
measurements used in the BB84 protocol do allow a squashing description,
although the six-state protocol does not. As a result, security proofs for the
BB84 protocol can be based on the assumption that the eavesdropper forwards at
most one photon, while the same does not hold for the six-state protocol.Comment: 4 pages, 2 figures. Fixed a typographical error. Replaced the
six-state protocol counter-example. Conclusions of the paper are unchange
Irreversibility in asymptotic manipulations of entanglement
We show that the process of entanglement distillation is irreversible by
showing that the entanglement cost of a bound entangled state is finite. Such
irreversibility remains even if extra pure entanglement is loaned to assist the
distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states
under pure entanglement catalytic LOCC adde
Quantum nonlocality in the presence of superselection rules and data hiding protocols
We consider a quantum system subject to superselection rules, for which
certain restrictions apply to the quantum operations that can be implemented.
It is shown how the notion of quantum-nonlocality has to be redefined in the
presence of superselection rules: there exist separable states that cannot be
prepared locally and exhibit some form of nonlocality. Moreover, the notion of
local distinguishability in the presence of classical communication has to be
altered. This can be used to perform quantum information tasks that are
otherwise impossible. In particular, this leads to the introduction of perfect
quantum data hiding protocols, for which quantum communication (eventually in
the form of a separable but nonlocal state) is needed to unlock the secret.Comment: 4 page
- …