8,522 research outputs found
Silicon device performance measurements to support temperature range enhancement
Semiconductor power devices are typically rated for operation below 150 C. Little data is known for power semiconductors over 150 C. In most cases, the device is derated to zero operating power at 175 C. At the high temperature end of the temperature range, the intrinsic carrier concentration increases to equal the doping concentration level and the silicon behaves as an intrinsic semiconductor. The increase in intrinsic carrier concentration results in a shift of the Fermi level toward mid-bandgap at elevated temperatures. This produces a shift in devices characteristics as a function of temperature. By increasing the doping concentration higher operating temperatures can be achieved. This technique was used to fabricate low power analog and digital devices in silicon with junction operating temperatures in excess of 300 C. Additional temperature effects include increased p-n junction leakage with increasing temperature, resulting in increased resistivity. The temperature dependency of physical properties results in variations in device characteristics. These must be quantified and understood in order to develop extended temperature range operation
The NASA low thrust propulsion program
The NASA OAST Propulsion, Power, and Energy Division supports a low thrust propulsion program aimed at providing high performance options for a broad range of near-term and far-term mission and vehicles. Low thrust propulsion has a major impact on the mission performance of essentially all spacecraft and vehicles. On-orbit lifetimes, payloads, and trip times are significantly impacted by low thrust propulsion performance and integration features for Earth-to-orbit (ETO) vehicles, Earth-orbit and planetary spacecraft, and large platforms in Earth orbit. Major emphases are on low thrust chemical propulsion, both storables and hydrogen/oxygen; low-power (auxiliary) electric arcjects and resistojets; and high-power (primary) electric propulsion, including ion, magnetoplasmadynamic (MPD), and electrodeless concepts. The major recent accomplishments of the program are presented and their impacts discussed
Rangeland as a common property resource: contrasting insights from communal areas of central Eastern Cape Province, South Africa
This paper explores the grazing management systems in operation in communal areas of central Eastern Cape Province, South Africa, through two contrasting case studies from the region. Considerable differences in current management systems are identified and are shown to depend primarily on the degree of control that can be exercised by communities over communal grazing resources. This in turn can be related to the social and ecological heterogeneity that characterises the region and how this influences pressure on grazing resources at the local level. On the basis of this study three broad levels of grazing management system are identified in these communal areas. These are: complete lack of management with grazing taking place in an ‘open-access’ manner; grazing being controlled on a community basis and grazing taking place on private land and being controlled entirely by the landowner. Many aspects of these scenarios find reflection in struggles over common property which are taking place in other parts of Africa. Understanding the variation in these systems from both a social and ecological perspective will be fundamental in challenging previous management paradigms, and facilitating the development of effective common property institutions for grazing management systems in communal areas of South Africa
Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks.
Background/study contextDeclining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the "common cause" hypothesis of Lindenberger & Baltes, 1994, Psychology and Aging, 9, 339-355). McGowan, Patterson, and Jordan (2013, Experimental Aging Research, 39, 70-79) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (La Fleur and Salthouse, 2014, Psychonomic Bulletin & Review, 21, 1202-1208) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic.MethodsUsing results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better).ResultsAs expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria.ConclusionThe current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance-thereby replicating La Fleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g., contrast sensitivity, luminance) affect age differences in cognitive functioning
Fundamental Investigation of Si Anode in Li-Ion Cells
Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes
A Quantum Optomechanical Interface Beyond the Resolved Sideband Limit
Mechanical oscillators which respond to radiation pressure are a promising
means of transferring quantum information between light and matter.
Optical--mechanical state swaps are a key operation in this setting. Existing
proposals for optomechanical state swap interfaces are only effective in the
resolved sideband limit. Here, we show that it is possible to fully and
deterministically exchange mechanical and optical states outside of this limit,
in the common case that the cavity linewidth is larger than the mechanical
resonance frequency. This high-bandwidth interface opens up a significantly
larger region of optomechanical parameter space, allowing generation of
non-classical motional states of high-quality, low-frequency mechanical
oscillators.Comment: 5 figure
Rangeland management in communal areas of Central Eastern Cape province, South Africa: a study of two contrasting cases
Energetic proton spectra in the 11 June 1991 solar flare
The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture
Using Sterics to Promote Reactivity in \u3cem\u3efac\u3c/em\u3e-Re(CO)\u3csub\u3e3\u3c/sub\u3e Complexes of Some ‘Non-Innocent’ NNN-Pincer Ligands
Two new redox active ligands based on di(2-(3-organopyrazolyl)-p-tolyl)amine have been prepared in order to investigate potential effects of steric bulk on the structures, electronic properties, or reactivity of tricarbonylrhenium(I) complexes. Replacing the hydrogens at the 3-pyrazolyl positions with alkyl groups causes significant distortion to the ligand framework due to potential interactions between these groups when bound to a fac-Re(CO)3 moiety. The distortions effectively increase the nucleophilic character of the central amino nitrogen and ligand-centered reactivity of the metal complexes
- …
