1,771 research outputs found
Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations
Mutations create the genetic diversity on which selective pressures can act,
yet also create structural instability in proteins. How, then, is it possible
for organisms to ameliorate mutation-induced perturbations of protein stability
while maintaining biological fitness and gaining a selective advantage? Here we
used a new technique of site-specific chromosomal mutagenesis to introduce a
selected set of mostly destabilizing mutations into folA - an essential
chromosomal gene of E. coli encoding dihydrofolate reductase (DHFR) - to
determine how changes in protein stability, activity and abundance affect
fitness. In total, 27 E.coli strains carrying mutant DHFR were created. We
found no significant correlation between protein stability and its catalytic
activity nor between catalytic activity and fitness in a limited range of
variation of catalytic activity observed in mutants. The stability of these
mutants is strongly correlated with their intracellular abundance; suggesting
that protein homeostatic machinery plays an active role in maintaining
intracellular concentrations of proteins. Fitness also shows a significant
correlation with intracellular abundance of soluble DHFR in cells growing at
30oC. At 42oC, on the other hand, the picture was mixed, yet remarkable: a few
strains carrying mutant DHFR proteins aggregated rendering them nonviable, but,
intriguingly, the majority exhibited fitness higher than wild type. We found
that mutational destabilization of DHFR proteins in E. coli is counterbalanced
at 42oC by their soluble oligomerization, thereby restoring structural
stability and protecting against aggregation
An interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations
Time-dependent fluctuations in the catalysis rate ({delta}k(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion {delta}{omega}0(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy ({delta}E(t)) as a contributor to {delta}k(t) and relate the latter to {delta}{omega}0(t). The resulting relation between {delta}k(t) and {delta}{omega}0(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated {delta}E(t) on fluctuations in the radiative component ({delta}{gamma}Formula(t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between {delta}{gamma}Formula(t) and {delta}{omega}0(t) is obtained. Experimental tests will determine whether the correlation functions for {delta}k(t), {delta}{omega}0(t), and {delta}{gamma}Formula are indeed similar for any enzyme. Measurements of dielectric dispersion, {varepsilon}({omega}), for the enzyme discussed elsewhere will provide further insight into the correlation function for {delta}E(t). They also will determine whether fluctuations in the nonradiative component {gamma}Formula of the lifetime decay has a different origin, fluctuations in distance for example
Mechanism of strand displacement synthesis by DNA replicative polymerases
Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing
Adenosine-5′-phosphosulfate - a multifaceted modulator of bifunctional 3′-phospho-adenosine-5′-phosphosulfate synthases and related enzymes
All sulfation reactions rely on active sulfate in the form of 3′-phosphoadenosine-5′-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5′-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3′-phospho-adenosine-5′-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP binding site and the PAPS/APS-binding site. For human PAPS synthase 1, the steady-state concentration of APS has been modelled to be 1.6 lM, but this may increase up to 60 lM under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15 lM. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme–ADP–APS complex at APS concentrations between 0.5 and 5 lM; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions
Novel synthesis and characterisation of 3,3-dimethyl-50-(2-benzothiazolyl)- spironaphth(indoline-2,30-[3H]naphth[2,1-b] [1,4]oxazine) derivatives
Novel modified spirooxazines (SOs) with additional chelating groups were synthesised and the crystal
structure of one of these was determined. UV–vis spectroscopic characterization of the photoisomerization
of the SO derivatives shows that the photochromic behaviour is altered with Zn2+ coordination. In
particular, addition of a group as in carboxylic acid 5 to the indole section of the SO increases the lifetime
of the merocyanine Zn 2+ complex by 20-fold compared to the methylated indole 6
The Carboxyl Terminus of The Bacteriophage T4 DNA Polymerase is Required for Holoenzyme Complex Formation
To further elucidate the mechanism and dynamics of bacteriophage T4 holoenzyme formation, a mutant polymerase in which the last six carboxyl-terminal amino acids are deleted, was constructed, overexpressed, and purified to homogeneity. The mutant polymerase, designated ΔC6 exo−, is identical to wild-type exo− polymerase with respect to kcat, kpol, and dissociation constants for nucleotide and DNA substrate. However, unlike wild-type exo− polymerase, the ΔC6 exo− polymerase is unable to interact with the 45 protein to form the stable holoenzyme. A synthetic polypeptide corresponding to the carboxyl terminus of the wild-type exo− polymerase was tested as an in vitro inhibitor of bacteriophage T4 DNA replication. Surprisingly, the peptide does not directly inhibit holoenzyme complex formation by disrupting the interaction of the polymerase with the 45 protein. On the contrary, the peptide appears to disrupt the interaction of the 44/62 protein with the 45 protein, suggesting that the 44/62 protein and the polymerase use the same site on the 45 protein for functional interactions. Data presented are discussed in terms of a model correlating the functionality of the carboxyl terminus of the polymerase for productive interactions with the 45 protein as well as in terms of the 45 protein concomitantly interacting with the 44/62 protein and polymerase
Assembly and Disassembly of DNA Polymerase Holoenzyme
The complex task of genomic replication requires a large collection of proteins properly assembled within the close confines of the replication fork. The mechanism and dynamics of holoenzyme assembly and disassembly have been investigated using steady state and pre-steady state methods as opposed to structural studies, primarily due to the intrinsic transient nature of these protein complexes during DNA replication. The key step in bacteriophage T4 holoenzyme assembly involves ATP hydrolysis, whereas disassembly is mediated by subunit dissociation of the clamp protein in an ATP-independent manner
Examination of The Role of The Clamp-loader and ATP Hydrolysis in The Formation of The Bacteriophage T4 Polymerase Holoenzyme
Transient kinetic analyses further support the role of the clamp-loader in bacteriophage T4 as a catalyst which loads the clamp onto DNA through the sequential hydrolysis of two molecules of ATP before and after addition of DNA. Additional rapid-quench and pulse-chase experiments have documented this stoichiometry. The events of ATP hydrolysis have been related to the opening/closing of the clamp protein through fluorescence resonance energy transfer (FRET). In the absence of a hydrolysable form of ATP, the distance across the subunit interface of the clamp does not increase as measured by intramolecular FRET, suggesting gp45 cannot be loaded onto DNA. Therefore, ATP hydrolysis by the clamp-loader appears to open the clamp wide enough to encircle DNA easily. Two additional molecules of ATP then are hydrolyzed to close the clamp onto DNA. The presence of an intermolecular FRET signal indicated that the dissociation of the clamp-loader from this complex occurred after guiding the polymerase onto the correct face of the clamp bound to DNA. The final holoenzyme complex consists of the clamp, DNA, and the polymerase. Although this sequential assembly mechanism can be generally applied to most other replication systems studied to date, the specifics of ATP utilization seem to vary across replication systems
Examination of The Role of The Clamp-loader and ATP Hydrolysis in The Formation of The Bacteriophage T4 Polymerase Holoenzyme
Transient kinetic analyses further support the role of the clamp-loader in bacteriophage T4 as a catalyst which loads the clamp onto DNA through the sequential hydrolysis of two molecules of ATP before and after addition of DNA. Additional rapid-quench and pulse-chase experiments have documented this stoichiometry. The events of ATP hydrolysis have been related to the opening/closing of the clamp protein through fluorescence resonance energy transfer (FRET). In the absence of a hydrolysable form of ATP, the distance across the subunit interface of the clamp does not increase as measured by intramolecular FRET, suggesting gp45 cannot be loaded onto DNA. Therefore, ATP hydrolysis by the clamp-loader appears to open the clamp wide enough to encircle DNA easily. Two additional molecules of ATP then are hydrolyzed to close the clamp onto DNA. The presence of an intermolecular FRET signal indicated that the dissociation of the clamp-loader from this complex occurred after guiding the polymerase onto the correct face of the clamp bound to DNA. The final holoenzyme complex consists of the clamp, DNA, and the polymerase. Although this sequential assembly mechanism can be generally applied to most other replication systems studied to date, the specifics of ATP utilization seem to vary across replication systems
Assembly and Disassembly of DNA Polymerase Holoenzyme
The complex task of genomic replication requires a large collection of proteins properly assembled within the close confines of the replication fork. The mechanism and dynamics of holoenzyme assembly and disassembly have been investigated using steady state and pre-steady state methods as opposed to structural studies, primarily due to the intrinsic transient nature of these protein complexes during DNA replication. The key step in bacteriophage T4 holoenzyme assembly involves ATP hydrolysis, whereas disassembly is mediated by subunit dissociation of the clamp protein in an ATP-independent manner
- …
