29 research outputs found
Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?
The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway and 2) thigh muscle activation magnitudes and duration. Baseline and post-intervention data were collected. Metabolic rate, heart rate, frontal plane center of mass sway, quadriceps and hamstrings muscle activity, and co-contraction indices were evaluated during steady state walking at a standardized speed. Visual feedback successfully decreased center of mass sway 12% (p = 0.006) and quadriceps activity 12% (p = 0.041); however, thigh muscle co-contraction indices were unchanged. Neither condition significantly affected metabolic rate during walking and heart rate increased with center-of-mass feedback. Metabolic rate, center of mass sway, and integrated quadriceps muscle activity were all not significantly different from controls. Attempts to modify gait to decrease metabolic demand may actually adversely increase the physiological effort of walking in individuals with lower extremity amputation who are young, active and approximate metabolic rates of able-bodied adults
Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN) in individuals with and without transtibial amputation
Background
Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN) in individuals with and without transtibial amputations (TTA). Methods
Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results
Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (\u3c 2.5â—‹) and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions
The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground
Locomotor adaptability in persons with unilateral transtibial amputation
Background
Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective
Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods
The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results
Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions
Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb
Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN) in individuals with and without transtibial amputation
Abstract Background Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN) in individuals with and without transtibial amputations (TTA). Methods Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (â—‹) and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.</p
Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP).
BackgroundA bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation.ObjectiveExamine changes in frontal plane movement patterns after BAP implantation.MethodsParticipants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12-months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss.ResultsStatistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation.ConclusionsDeviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while within-participant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA
Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)
Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user’s skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12-months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while within-participant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA
Visual display of example real-time feedback for EMG (top) and COM (bottom) within the Computer-Assisted Rehabilitation Environment (CAREN).
<p>Visual display of example real-time feedback for EMG (top) and COM (bottom) within the Computer-Assisted Rehabilitation Environment (CAREN).</p
Mean (SD bars) CCI for the thigh muscles during the first 20% and last 20% of the gait cycle.
<p>During the first 20%, the VL acts as an agonist (BF antagonist) and during the last 20% the BF acts as an agonist (VL antagonist) [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0171786#pone.0171786.ref025" target="_blank">25</a>]. # indicates a significant difference from the control value; there were no significant differences between feedback conditions.</p