31 research outputs found

    Changes in the Distribution of Atlantic Bluefin Tuna (Thunnus thynnus) in the Gulf of Maine 1979-2005

    Get PDF
    The Gulf of Maine, NW Atlantic Ocean, is a productive, seasonal foraging ground for Atlantic bluefin tuna (Thunnus thynnus), but commercial landings of adult size classes were up to 40% below the allocated total allowable catch between 2004 to 2008 for the rod and reel, harpoon, and purse seine categories in the Gulf of Maine. Reduction in Atlantic bluefin tuna catches in the Gulf of Maine could represent a decline in spawning stock biomass, but given wide-ranging, complex migration patterns, and high energetic requirements, an alternative hypothesis is that their dispersal patterns shifted to regions with higher prey abundance or profitability, reducing availability to U.S. fishing fleets. This study fit generalized linear models to Atlantic bluefin tuna landings data collected from fishermen’s logbooks (1979-2005) as well as the distances between bluefin tuna schools and Atlantic herring (Clupea harengus), a primary prey species, to test alternative hypotheses for observed shifts in Atlantic bluefin tuna availability in the Gulf of Maine. For the bluefin model, landings varied by day of year, latitude and longitude. The effect of latitude differed by day of year and the effect of longitude differed by year. The distances between Atlantic bluefin tuna schools and Atlantic herring schools were significantly smaller (p<0.05) than would be expected from a randomly distributed population. A time series of average bluefin tuna school positions was positively correlated with the average number of herring captured per tow on Georges Bank in spring and autumn surveys respectively (p<0.01, r2=0.24, p<0.01, r2=0.42). Fishermen’s logbooks contributed novel spatial and temporal information towards testing these hypotheses for the bluefin tuna fishery

    HMMoce : an R package for improved geolocation of archival-tagged fishes using a hidden Markov method

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Methods in Ecology and Evolution 9 (2018): 1212-1220, doi:10.1111/2041-210X.12959.Electronic tagging of marine fishes is commonly achieved with archival tags that rely on light levels and sea surface temperatures to retrospectively estimate movements. However, methodological issues associated with light-level geolocation have constrained meaningful inference to species where it is possible to accurately estimate time of sunrise and sunset. Most studies have largely ignored the oceanographic profiles collected by the tag as a potential way to refine light-level geolocation estimates. Open-source oceanographic measurements and outputs from high-resolution models are increasingly available and accessible. Temperature and depth profiles recorded by electronic tags can be integrated with these empirical data and model outputs to construct likelihoods and improve geolocation estimates. The R package HMMoce leverages available tag and oceanographic data to improve position estimates derived from electronic tags using a hidden Markov approach. We illustrate the use of the model and test its performance using example blue and mako shark archival tag data. Model results were validated using independent, known tracks and compared to results from other geolocation approaches. HMMoce exhibited as much as 6-fold improvement in pointwise error as compared to traditional light-level geolocation approaches. The results demonstrated the general applicability of HMMoce to marine animals, particularly those that do not frequent surface waters during crepuscular periods.This work was funded by awards to C. Braun from the Martin Family Society of Fellows for Sustainability Fellowship at the Massachusetts Institute of Technology, the Grassle Fellowship and Ocean Venture Fund at the Woods Hole Oceanographic Institution, and the NASA Earth and Space Science Fellowship

    Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the Western North Atlantic

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skomal, G., Marshall, H., Galuardi, B., Natanson, L., Braun, C. D., & Bernal, D. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the Western North Atlantic. Frontiers in Marine Science, 8,(2021): 624158, https://doi.org/10.3389/fmars.2021.624158.The porbeagle (Lamna nasus) is a large, highly migratory endothermic shark broadly distributed in the higher latitudes of the Atlantic, South Pacific, and Indian Oceans. In the North Atlantic, the porbeagle has a long history of fisheries exploitation and current assessments indicate that this stock is severely overfished. Although much is known of the life history of this species, there is little fisheries-independent information about habitat preferences and ecology. To examine migratory routes, vertical behavior, and environmental associations in the western North Atlantic, we deployed pop-up satellite archival transmitting tags on 20 porbeagles in late November, 2006. The sharks, ten males and ten females ranging from 128 to 154 cm fork length, were tagged and released from a commercial longline fishing vessel on the northwestern edge of Georges Bank, about 150 km east of Cape Cod, MA. The tags were programmed to release in March (n = 7), July (n = 7), and November (n = 6) of 2007, and 17 (85%) successfully reported. Based on known and derived geopositions, the porbeagles exhibited broad seasonally-dependent horizontal and vertical movements ranging from minimum linear distances of 937 to 3,310 km and from the surface to 1,300 m, respectively. All of the sharks remained in the western North Atlantic from the Gulf of Maine, the Scotian Shelf, on George's Bank, and in the deep, oceanic waters off the continental shelf along the edge of, and within, the Gulf Stream. In general, the population appears to be shelf-oriented during the summer and early fall with more expansive offshore radiation in the winter and spring. Although sharks moved through temperatures ranging from 2 to 26°C, the bulk of their time (97%) was spent in 6-20°C. In the summer months, most of the sharks were associated with the continental shelf moving between the surface and the bottom and remaining < 200 m deep. In the late fall and winter months, the porbeagles moved into pelagic habitat and exhibited two behavioral patterns linked with the thermal features of the Gulf Stream: “non-divers” (n = 7) largely remained at epipelagic depths and “divers” (n = 10) made frequent dives into and remained at mesopelagic depths (200–1000 m). These data demonstrate that juvenile porbeagles are physiologically capable of exploiting the cool temperate waters of the western North Atlantic as well as the mesopelagic depths of the Gulf Stream, possibly allowing exploitation of prey not available to other predators.This research was funded by the Large Pelagics Research Center (Grant 06-125)

    Seasonal Occurrence, Horizontal Movements, and Habitat Use Patterns of Whale Sharks (\u3ci\u3eRhincodon typus\u3c/i\u3e) in the Gulf of Mexico

    Get PDF
    In the northern Gulf of Mexico (GOM), whale sharks (Rhincodon typus) form large aggregations at continental shelf-edge banks during summer; however, knowledge of movements once they leave aggregation sites is limited. Here we report on the seasonal occurrence of whale sharks in the northern GOM based on over 800 whale shark sightings from 1989 to 2016, as well as the movements of 42 whale sharks tagged with satellite-linked and popup satellite archival transmitting tags from 2008 to 2015. Sightings data were most numerous during summer and fall often with aggregations of individuals reported along the continental shelf break. Most sharks (66%) were tagged during this time at Ewing Bank, a known aggregation site off the coast of Louisiana. Whale shark track duration ranged from three to 366 days and all tagged individuals, which ranged from 4.5 to 12.0 m in total length, remained within the GOM. Sightings data revealed that whale sharks occurred primarily in continental shelf and shelf-edge waters (81%) whereas tag data revealed the sharks primarily inhabited continental slope and open ocean waters (91%) of the GOM. Much of their time spent in open ocean waters was associated with the edge of the Loop Current and associated mesoscale eddies. During cooler months, there was a net movement southward, corresponding with the time of reduced sighting reports. Several sharks migrated to the southwest GOM during fall and winter, suggesting this region could be important overwintering habitat and possibly represents another seasonal aggregation site. The three long-term tracked whale sharks exhibited interannual site fidelity, returning one year later to the vicinity where they were originally tagged. The increased habitat use of north central GOM waters by whale sharks as summer foraging grounds and potential interannual site fidelity to Ewing Bank demonstrate the importance of this region for this species

    Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    Get PDF
    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns

    Vertical habitat envelopes for 26 PSAT tagged juvenile Atlantic bluefin tuna.

    No full text
    <p>Depths were binned at 5 m increments and include a bin for all values deeper than 250 m. Temperatures were binned at 1°C. The scale indicates log of the frequency (counts) for each temperature depth combination for all PSAT tagged JBFT monthly. Winter envelopes indicate a bi-modal temperature and depth distribution reflective of the spatial range expansion and the varying oceanic regimes inhabited. Summer envelopes are more concentrated in temperature and depth indicative of the spatial range contraction to more homogeneous water masses on the continental shelf and at the shelf break off the northeast U.S.</p

    Utilization distributions aggregated for all PSAT tagged juvenile Atlantic bluefin tuna for each month.

    No full text
    <p>Core-use areas are spatially constrained in summer months (July–Sept.) and are more dispersed in winter months (Jan. – March). Fall months show a southern migration along the shelf break and increase in spatial dispersal while spring months show the reverse trend.</p

    An 8-day blended SST composite (AVHRR, MODIS, AMSR-E and GOES) centered on March 31, 2008 and corresponding locations from tagged JBFT at that time (n = 9).

    No full text
    <p>The black line marks the 20°C contour and shows a rough outline of the Gulf Stream at this time of year. This figure illustrates juvenile Atlantic bluefin tuna spatial disaggregation in winter months as well as the importance of the Gulf Stream as a winter habitat.</p

    Reference map of study area (panel A) and all reconstructed tracks from 2007 –2009 X-tagged juvenile bluefin tuna (n = 26).

    No full text
    <p>The period of July 2007 through September 2010 is represented. Panel B) shows tagged fish by year tagged while panel C) shows utilization distribution (UD) aggregated for all tagged fish during their time at liberty. The overall distribution indicates core-use areas off Cape Cod, Long Island and the mid-Atlantic coast. The color terminates at the 95% UD (side-use area).</p

    Recovered implanted archival tag showing external temperature (A, C, and E) and corresponding reconstructed migration (B, D and F) referenced by season.

    No full text
    <p>Colored bars in panels A, C and E correspond to the season color on the corresponding maps (panels B, D and F). Clear seasonal differences can be seen through the 30 months data were collected. When the fish inhabited well mixed water the depth patterns were more variable, with deep excursions and deeper mean depths. In summer months, in well stratified water, this fish had a more shallow depth distribution.</p
    corecore